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GENERAL INTRODUCTION 

One of the major tasks of time series analysis is to uncover the dynamic behavior of a 

time series to produce more accurate forecasts. Having access to better forecasts is of 

practical importance to economic agents and policy makers, e.g., production and financial 

planning, policy evaluation, and the control and optimization of industrial processes. 

Therefore, this dissertation focuses on a couple of topics in the area of economic forecasting. 

The class of stationary models is the most widely used class of stochastic models for 

describing time series. However, many time series are nonstationary tending to grow over 

time, which can be represented as the linear trend model with autoregressive and possibly 

unit-root errors. Various procedures have been proposed to estimate such model, among 

which, Falk and Roy (2000) showed that the Prais-Winsten modified weighted symmetric 

least squares estimation method is the best procedure to use to construct point forecasts for 

the linear trend model with first-order autoregressive errors. The first chapter of this 

dissertation is an extension of the paper by Falk and Roy (2000). By using Monte Carlo 

simulation and bootstrap methods to compare the actual and nominal coverage probabilities 

of prediction intervals, chapter I examines whether the best point predictor also leads to 

prediction intervals with the most accurate coverage rates for the linear trend model with 

first-order autoregressive errors. 

Expected rate of inflation is one of the most commonly investigated variables in 

economics due to its roles played in monetary policy and various economic theories. There 

are different approaches to measure economic agents' inflation expectations, such as using 

direct measure from surveys, or derive a proxy from long lags of past prices or inflation rates. 

An alternative approach, proposed by Hamilton (1992), uses a vector dynamic system to 
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measure expectations about future aggregate prices. The second chapter of this dissertation, 

chapter II, adopts this innovative methodology to construct inflation expectations by 

incorporating information in the commodity futures market. The third chapter is closely 

related to the second chapter by using the constructed time series of inflation expectations to 

examine two broadly debated topics in the field of economics, the Fisher effect and the 

Phillips curve. In general, there is controversy among economists over the short-run Fisher 

effect, but most empirical work tends to support the existence of the long-run Fisher effect. 

So the short-run Fisher effect is examined in the first part of chapter III. In the second part of 

chapter III, two main alternative specifications of the Phillips curve, the New Keynesian 

Phillips curve and the expectations-augmented Phillips curve, are estimated using the GMM 

method, and the empirical superiority of the two specifications are compared by both the 

encompassing test and the non-nested test. 
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CHAPTER I. 

PROBABILITY OF COVERAGE INVESTIGATION IN FORECASTING USING 

THE LINEAR TREND MODEL WITH AUTOREGRESSIVE ERRORS 

1. Introduction 

One of the major tasks of time-series analysis is to uncover the dynamic behavior of a time 

series to produce more accurate forecasts. The most widely used class of stochastic models 

for describing time series is the class of stationary models. However, many time series that 

arise in economics and industry appear to be non-stationary, tending to grow over time (e.g., 

nominal and real GDP, the money supply, etc.). One common approach to modeling 

trending time series is to model the series (or, in some cases, the growth rate of the series) as 

the sum of a deterministic function of time plus a stationary component. 

In this paper, we focus on the problem of forecasting a time series that can be 

represented as the sum of a deterministic linear function of time and an error process that has 

a stationary autoregressive representation, in level or first-difference form. This model is 

called the linear trend model with autoregressive errors. Our attention is limited to the 

univariate case, which is simple and convenient. Although it may be too simple in many 

applied settings, studying the simple case often leads to developments that are helpful in the 

multivariate setting. 

We will use Monte Carlo simulation and bootstrap methods to compare the actual and 

nominal coverage probabilities of (out-of-sample) prediction intervals associated with 

different estimators of the linear trend model with first-order autoregressive errors, varying 

the forecast horizon and the autoregressive coefficient (including the unit root case). This 
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paper is an extension of the paper by Falk and Roy (2000), which compares the mean-

squared errors corresponding to out-of-sample forecasts produced by different estimators of 

the linear trend model with autoregressive errors. 

The linear trend model with AR(1) errors has the form: 

Y,  =  a  + f i t  +  u ,=  X ,ô+ u t  t  =  l ,2 , . . . ,T  (1.1) 

u, = pu,.! + st p e (-1,1] (1.2) 

where the et's are independent and identically distributed random variables with zero-mean 

and constant variance CT2. The error series is a stationary process if |p| < 1, and is a random 

walk process when p = 1. 

Rewriting (1.1) and (1.2) in a more compact representation, we get 

Y, = a + bt + pY,.\ + e, (1.3) 

where a = a(l - p) + pp and b = (3(1 - p). 

If the parameters a, p, and p (or, equivalently, a, b, and p) are known, the h-step-ahead 

forecast that minimizes the mean squared error conditional upon the lagged Y's is the linear 

projection of Y%+h on Y%, Y%, ..., YT, which can be written as: 

^T+h\r = a + + h) + phuT (1-4) 

where ut = Yt - a - PT. 

In reality, the model parameters usually are unknown, so we need to estimate a, p, and p 

as part of the forecasting process. Then the h-step-ahead forecast has the following form: 

+ + (1.5) 
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where â ,  /?, and p  are the estimates of a, (3, and p, respectively. In this case, the forecast 

errors arise from two sources: the unpredictability of the s's after the period T; and the errors 

in estimating a, (3, and p. When equation (1.4) can be used to forecast the h-step-ahead 

values, forecast errors arise only from the unpredictability of the s's following the period T. 

In practice, it is important to get accurate estimates for a, p, and p to obtain more precise 

forecasts. We discuss the development of alternative estimators in section 2. Section 2 also 

introduces the asymptotic prediction variance formula, which can be used to compute the h-

step-ahead prediction interval. Section 3 contains the design and results of the Monte Carlo 

simulation used to compare the coverage properties of prediction intervals constructed from 

the various estimators. Section 4 presents the design and results of bootstrap method as an 

alternative way to verify the results we get in the previous session. Section 5 applies the 

procedures to empirical macroeconomic time series data, and section 6 concludes this paper. 

An appendix at the end of the paper contains the derivation of the formula used in section 2. 

2. Estimators and the Asymptotic Prediction Variance 

2.1. Estimators 

The most commonly used estimators of the linear trend model are the least squares 

estimators: ordinary least squares (OLS) and feasible generalized least squares (FGLS). The 

two OLS estimators are: 

OLSi : Estimate Yt = a + bt + pYt.i + st by OLS directly in one step. 
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OLS2: Estimate a and (3 from (1.1) by OLS to obtain â0LS and POLS, compute the residuals 

û, = Yt - âOLS - POLS t, and estimate p from (1.2) by OLS using the regression of w, on . 

The most widely used FGLS estimators are the Prais-Winsten (PW) estimator and the 

Cochrane-Orcutt (CO) estimator. Both apply the two-step OLS estimator (OLS2) to estimate 

p, then use the estimate p to quasi-difference the variables Yt, 1, and t to obtain Yt, 1 , and 

t , where Yt = Yt - p Yt.i, 1 = 1 -p, and t = t - p (t-1). The CO-FGLS estimators of a and (3 

come from the regression of Yt on land t for t = 2, 3, ..., T, ignoring the initial 

observation. The PW-FGLS estimator for a and (3 includes the information in the first 

observation by regressing Yt on 1 and 7 for t = 1, 2, ..., T, where the initial observations are 

[Yi, 1, 1]*(1 - p2)m if p < 1, and [Y,, 0, 1] if p =1. 

In each of these procedures, the estimator of p is obtained by fitting an AR(1) model by 

OLS, which is the conditional maximum likelihood estimator for Gaussian processes. This 

estimator differs from the less convenient unconditional maximum likelihood estimator since 

it ignores the information about p contained in the initial observation Yj, with the difference 

getting larger as p approaches unity. Alternative estimators of p have been developed to 

approximate better the unconditional (quasi-) maximum likelihood estimator of p. 

Park and Fuller (1994) developed the weighted symmetric least squares (WSLS) 

estimator of the p-th order autoregressive time series: 

(li6) 

where the st's are independent N(0, a2) random variables. 
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Note that a stationary time series satisfying (1.6) also satisfies: 

u< +7, (I-?) 

where r|t has the same covariance structure as et. The WSLS estimator is obtained by 

minimizing: 

Q =ZLf+i w t  ~ XL Pi u t - i f  + (i ~ w<+i )K ~2w ptut+i i2 (18) 

for a given set of weights, 0 < wt < 1 for t = 1, 2, ... ,T. In other words, the WSLS estimator 

is obtained by minimizing the weighted sum of the squares of ep+i, ... , St, r|i, ..., r|j-p- The 

ordinary least squares estimator is obtained by setting wt = 1. With wt = 0.5, the simple 

symmetric least squares estimator is obtained. Park and Fuller's (1994) weighted symmetric 

estimator is obtained by minimizing (1.8) with the following specification of the weights: 

w t -0  t  =  1 ,  2 ,  . . . , p  

= (t -p) / (n - 2p + 2) t =p+l, T-p+1 (1.9) 

= 1  t -T -p+2 ,  . . . ,  T  

For the AR(1) error sequence, the WSLS estimator of p is: 

pm = ŒT>- +r"£L".2rZL"."H o-io) 

The WSLS estimator reduces the downward bias of the OLS estimator of p in the AR(1) 

model, and has a smaller mean squared error for "large" values of p. Asymptotically, the 

two estimators are equivalent. 

Fuller (1996) suggested extending the WSLS estimator to the trend model with AR(1) 

errors by first applying OLS to (1.1) to obtain estimates âOLS, fi0LS, and w, = Yt - âOLS - /3OLS t. 

Then the WSLS estimator pws can be computed from (1.10) with ut in place of ut. Falk 
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(1999) showed that this estimator of p outperforms OLSi and OLS2 in finite samples, 

especially when p is close to or equal to 1. The PW-WSLS estimators for a and P, after 

quasi-differencing the data, are obtained by regressing Y, on 1 and 7 for t = 1, 2, ..., T. 

Fuller's (1996) modified weighted symmetric least squares (MWSLS) estimator for the 

AR(p) model provides an approximately median-unbiased estimator with a root close to or 

equal to unity.1 Roy and Fuller (1999) extended the MWSLS estimator to provide an 

approximately median unbiased estimator of p in the linear trend model with AR errors. 

Their estimator is specified as follows: 

Puws = min{p*, 1) (1.11) 

where 

P ~ Pws ^ws,\ ) ^ws 

^ws , i  ~  (  Pws  '  l yân  

and 

C(Tws,l) \^Med Cl(^ws, 1 ~ ^Med)\ {f ^tvs,\ ^Med 

= ( / T ) - 3 / [ rws l + k(5+ rws x )] if-5 < frs_, < rMed 

= ( W r ) if<3T)"! < f„., < -5 

= 0 i f t W S A <-(3T) m  

and TMed is the median of the limiting distribution of fWSA when p = 1 (Fuller 1996, Table 

10.A.4), 

k  =  [3T-  T2
Med (T  +  l ) ] / [ T MeA.5 + TMed) (T  +  / ) ]  

a  =(1 .12-  1 .5 /T) /1 .65  
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So, to implement the MWSLS estimator of p in the AR(1) case, the OLS residuals h, 

(=Yt - à - fit) are regressed on ût_x using the WSLS estimator, which then is adjusted 

according to (1.11). Then pMWS is used to quasi-difference the data to get Yt, 1 , and 7, and 

the PW-MWSLS estimators for a and (3 are obtained by regressing Yt on 1 and t for t = 1, 

2, ..., T. 

Forecasts generated from the PW-OLSa, PW-WSLS, and PW-MWSLS estimators (i.e., 

the Prais-Winsten feasible GLS estimators that use the OLS2, WSLS, and MWSLS 

estimators of p, respectively), along with those generated from the simple OLSi estimator, 

will be compared in this paper. Forecasts generated from the OLS2 estimator and CO-FGLS 

estimators will not be considered because the OLSi estimator is better than the OLS2 

estimator and the PW-FGLS estimator is better than the CO-FGLS in the sense of root mean 

squared errors (RMSEs) in forecasting. Ng and Vogelsang (1999) showed that when p is 

large, forecasts constructed from the OLSi estimator have smaller RMSEs than do forecasts 

constructed from the OLS2 estimator. They also showed that forecasts constructed from the 

PW-FGLS estimator have smaller RMSEs than do forecasts constructed from the CO-FGLS 

estimator.2 

2.2. Asymptotic Prediction Variance (APV) 

This section of the paper considers a couple of methods to compute the asymptotic prediction 

variance that will be used in constructing prediction intervals. In the appendix we show that 
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for sufficiently large T, following Baillie (1979), the APV of the h-step-ahead prediction 

error for a linear trend model with AR(1) errors can be expressed as: 

APV, = + var(â )(1 - fP)2 + var(P)(T+h - fÎT)2 

+ 2(1 - fï)(T+h- /JlT)cov(âJ) (1.12) 

+ o 2 f f ( h ~^h 2 var (p ) / ( l  -  f? )  

for p < 1. When p = 1, we replace the term a2/(l-p2) in the last summand by Ta2. The first 

term in (1.12) is due to the random disturbances in the forecast period, the last term is due to 

the estimation of p, and the three terms in the middle arise from the estimation of a and p. 

Note that the estimator of the h-step-ahead prediction error variance is uncorrected with the 

estimators â and/5, so that covariances involving p do not appear in (1.12). This APV 

measure relies on the unknown parameters a2 and p directly and indirectly (through the 

var i ance  and  covar i ance  t e rms  invo lv ing  â  ,  P ,  andp) .  

Spitzer and Baillie (1983) proposed a feasible alternative to (1.12) constructed by 

replacing p with p and a1 with a1:3 

APV2 = S"2 E*!yy + var(a)(l - ph)2 + var(P)(T+h - phT)2 

+ 2(1-  p h ) (T+h  -  p h T)cov(a ,P)  (1.13) 

+ cr2 p2(h'x) h2 var(p) / (1 - p2) 

In (1.13), var( a ), var( P ), cov(a,p) ,  and var( p ) are the estimated variances and 

covariances for â , P , andp , respectively. When p= 1, we replace the term a 1  /(I-p 1  ) in 

the last summand by T â2. 

The computations of APV; and APV; require the variance and covariance matrix for the 

coefficient estimators. Since we are using a consistent estimator of p, an asymptotically 
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valid estimator of the variance-covariance matrix for â  and p  can be obtained by treating p 

as known and equal to p and then estimating the variance-covariance matrix from the 

following regression: 

Yt - pYt_x - a(l - p) + P(t- p(t -1)) + st 
(1.14) 

where Xt*( p  )  = [(1- p  )  (t - p  (t - 1))], which is the row vector of the model matrix X*( p  ) ,  

and 8 = [a P]T. The resulting estimated covariance matrix is: 

SSR(S ,p )^  x n T  ̂  =  

T - k  

var(â) cov(â, p) 

c o  v { P , â )  v a r  ( P )  
(1.15) 

When we compute (1.13) using (1.15) to calculate var( a ), var( p ), and cov(a,/? ), setting 

var( p ) = 0, we call the resulting measure of the asymptotic prediction variance APV2(1). 

An alternative procedure that takes into consideration the sampling variance of p  is to 

use the Gauss-Newton estimator, as suggested by Davidson and MacKinnon (1993): 

% - jô %./-(% - jô JW <?=(%- p + rû,_, + Q (1.16) 

where «M = Yt.i - Xt.i S . Then the estimated covariance matrix for S, i.e., the variances 

and covariance of â and (5, will be the upper left-hand 2x2 block of the matrix: 

&M(<?,p) 

T - k - 1  A 7 A w_,  u_  
(1.17) 

where û_ x  is the vector containing elements of z2,_,. The right-bottom element is an estimate 

of the variance of p. Note that the off-diagonal elements of this matrix sequence converge 
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to zero as T increases. Label the computed APV; using the variance and covariance 

estimates of the PW-MWSLS estimators from (1.17) as APV](2). 

Roy, Falk, and Fuller (1999) also suggested use of the Gauss-Newton estimator. They 

argued that the ordinary t-statistics for (3 have large variances for two reasons: first, the 

variance of the trend coefficient is a highly nonlinear function of p; and, second, the 

maximum variance occurs at p=l, the boundary of the parameter space, which automatically 

leads to a negative bias in variance estimation, which in turn is magnified heavily through the 

estimated variance function that has a very steep slope when p is close or near to one. So to 

use Gauss-Newton estimators will create a test statistic with a distribution that is closer to 

that of Student's t. 

Replacing the variance estimate for p  by the asymptotic variance formula for p  :  

( . l - p 2 ) / T  (1.18) 

we calculate APV: again with the sampling variance of p as shown in (1.18), and label it as 

APV%(3). 

Then, asymptotically valid 100(1-a) percent prediction intervals for the h-step-ahead 

forecast can be constructed according to 

(1.19) 

where tr-k(cc/2) is the 100(1-a/2) percentile of the t-distribution with T-k degrees of freedom, 

and k is the number of parameters used in the estimation. 
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3. The Monte Carlo Design and Results 

Following Falk and Roy (2000), we use the fixed sample size T = 100. For each value of p e 

{0, 0.4, 0.8, 0.9, 0.95, 0.975, 0.99, 1}, 1,000 realizations of ei, ... , sioo, £101, •••, Sno are 

generated by independent draws from a standard normal distribution. For each series of e's, 

calculate ui, ... , uno and Yi, ... , Yno from equations (1.1) and (1.2) with the restriction that 

a and P are set equal to zero. The initial value uo is drawn from the stationary distribution 

N(0, l/(l-p2)) for p < 1, and uo is set to 0 when p = 1. 

First, we attempt to replicate the results reported by Falk and Roy (2000) regarding the 

fo recas t  accuracy  fo r  d i f f e ren t  e s t ima to r s  o f  the  l inea r  t r end  mode l .  For  each  sample  Y 

Yno, the first 100 observations are used to estimate the model according to each of the 

following previously defined estimators: OLSi, WSLS, MWSLS, PW-OLS2, PW-WSLS, 

and PW-MWSLS. From equations (1.4) and (1.5), Yf+h]T and YT
F

+hlT are calculated for each 

estimated model and h = 1, 2, ..., 10. The forecast errors that Falk and Roy (1980) are 

concerned with are attributable to the estimation errors, defined to be the differences between 

Yf+h]T and YT
F

+hlT. The values of RMSE as a function of p and h are reported in Table 1.1. 

Results similar to those reported by Falk and Roy are obtained. When p is small all the 

procedures perform about the same; when p is sufficiently large, i.e., close to or equal to one, 

the PW-MWSLS procedure forecasts better in the RMSE sense than the other procedures. 

However, when p is in the neighborhood of 0.8 to 0.9, the PW-MWSLS estimator actually 

produces higher RMSEs than the PW-FGLS and PW-WSLS procedures, particularly at 

longer forecast horizons. The explanation given by Falk and Roy (1999) is that the FGLS 

estimators of the trend coefficient P that use the median-unbiased estimators of p (PW-
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MWSLS) will have higher variances than the downward-biased estimators of p (PW-FGLS 

or PW-WSLS) when p is sufficiently large but not too close to one. Overall, in terms of 

RMSE, the PW-MWSLS procedure is recommended by Falk and Roy as the best procedure 

to apply in forecasting from the trend model with autoregressive errors, and their conclusion 

is confirmed here. 

This paper extends Falk and Roy's paper by comparing the nominal and actual coverage 

properties of prediction intervals constructed from the various Prais-Winsten estimators of 

the linear trend model with autoregressive errors. Simulation methods are used to see which 

estimator's prediction intervals give the probability of coverage that is closest to the 

asymptotic (i.e., nominal) probability of coverage. Following the same simulation design 

that was applied to construct the results shown in Table 1.1, 90 percent prediction intervals 

for the h-step-ahead predictions are constructed using equation (1.19) and the asymptotic 

prediction variance measures APV2(1), APV2(2), and APV2(3), respectively. Tables 1.2, 1.3, 

and 1.4 provide the actual percentages of times that Yioi,..., Yno fell into these intervals. 

Table 1.2 shows the probability of coverage when APVzfl), which ignores the sampling 

variability of p, is used to compute the asymptotic prediction measure from the PW-OLS2, 

PW-WSLS, and PW-MWSLS estimators. The coverage rates for these three estimators are 

clustered tightly around 90 percent for h = 1, 2, and p = 0.0, 0.4, ranging between 88.6 

percent and 91.7 percent. As p and/or h increases, the coverage rates corresponding to the 

PW-OLS2 and PW-WSLS estimators decrease substantially. However, the coverage rates 

corresponding to PW-MWSLS remain quite stable, falling within 88.1 percent and 92.1 

percent, except for the following three cases: p = 0.975 and h = 10 (0.869), p = 1 and h = 8 
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(0.862), and p = 1 and h = 10 (0.836). Even at the values of these exceptions, however, we 

can see that they still perform much better than PW-OLS2 and PW-WSLS, by being from 6.8 

percent to 8.9 percent closer to the true coverage rate of 90 percent. The exceptions all occur 

at long horizons, where it is reasonable to expect deteriorating results. 

Table 1.3 uses the asymptotic prediction variance APV](2), which explicitly accounts for 

the sampling variability in estimating p, to construct 90 percent prediction intervals from the 

PW-OLS2, PW-WSLS, and PW-MWSLS estimators. The coverage rates for the PW-OLS2 

and PW-WSLS estimators improve slightly in comparison to the coverage rates reported in 

Table 1.2, but the qualitative conclusions drawn from Table 1.2 also apply to Table 1.3. 

Specifically, the actual coverage rates are well below 90 percent for large p and/or large h. 

The coverage rates for the PW-MWSLS estimator improve slightly when p = 0.0, 0.4, 0.8, 

and 0.9, although in both tables these coverage rates are very close to 90 percent. There is 

also some improvement when p = 1. Note in particular that when p = 1 and h = 8, and when 

p = 1 and h = 10, using AP\^(2) rather than APV2(1) improves the coverage of the 

prediction intervals for PW-MWSLS considerably. However, for p = 0.95, 0.975, and 0.99, 

and when h = 1, 2, and 4, the coverage rates from the PW-MWSLS estimator generally are 

further away from 90 percent when APV2(2) is applied than when APV2(1) is applied. The 

reason for this is unclear and may warrant further study. 

We also computed the 90 percent prediction interval from PW-OLS2, PW-WSLS, and 

PW-MWSLS estimators using the asymptotic prediction variance APV2(3) when the variance 

estimate for p is derived by the asymptotic variance formula for p in equation (1.18). The 

conclusions about these three estimators are quite similar to the results shown earlier in Table 
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1.3, so those results are not reported in this paper. Such similar results provide an alternative 

way to construct the asymptotic prediction interval, which will give coverage properties as 

good as those obtained using APV2(2). 

4. Bootstrap Methods and Results 

As pointed out by Clements and Taylor (2001), there are a number of issues on the 

calculation of prediction intervals with appropriate coverage levels, which include the need 

to allow for parameter estimation uncertainty, small-sample biases of the parameter 

estimates, need to take non-linearity into consideration when the forecasts are non-linear 

functions of the parameter estimates, etc. The bootstrap method may work better than 

simulations by re-sampling to avoid inaccurate approximations to biases, variances, and other 

measures of uncertainty. In this section, the bootstrap method is applied to verify the results 

by simulation, and in the hope of obtaining results that would improve the simulation results 

presented in the previous section. 

The bootstrap procedure is as follows: 

Step (1): 

For fixed sample size T = 100, and for each value of p e {0, 0.4, 0.8, 0.9, 0.95, 0.975, 0.99, 

1}, we generate series {£,}"? by independent draws from a standard normal distribution, and 

then calculate series and {Y,})!" from equations (1.1) and (1.2) with the restriction 

that a and (3 are set equal to zero. The initial value uo is drawn from the stationary 

distribution N(0, l/(l-p2)) for p < 1, and uo is set to 0 when p = 1. 

Step (2): 
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For the sample {7,})'°, the last 10 observations are set aside for the purpose of forecasting, 

and the first 100 observations are used to estimate the model. The final estimates â, fi, and 

p are obtained using each of the three different estimators: PW-OLS2, PW-WSLS, and PW-

MWSLS. The residual series is calculated as ût - Yt -â 1 - p t for t = 1, , 100. The 

following steps are introduced by focusing on one estimator to avoid confusion. 

Step (3): 

Generate B=1000 bootstrap samples u b ,  ... , wf00 by sampling with replacement from 

For each bootstrap sample, compute â = â (1-p)+ fip and b = (5(1-yô), then 

construct {Yt
b} series using the formula Yt

h= â + bt+ pY*_x for t = 2, ... ,100, and the initial 

value y/ is set to be u \  ; i.e., we treat the initial value as fixed when we construct the 

bootstrap samples. 

Step (4): 

For each bootstrap sample Yx
b, ... , Y^ ,  the observations are used to estimate the model. 

The estimate pb is then applied to quasi-difference the variables Yt
b, 1 and t to obtain 

y;\ ï \  and 7", where Yb= Y t" -  pb  Yb_ x ,  16=1 - pb ,  7 é  = t -  pb(t  -  1) for t  = 1, . . . ,  T. 

Step (5): 

The h-step-ahead forecast is computed using the formula 

YL = à b + P b  (T + h) + (p b ) h  û b
T ,  h = 1, . . . ,  10 (1.20) 

where û b  = Y b -â b -p b  T. 

Step (6): 



www.manaraa.com

18 

The bootstrap-t method is applied to obtain the 100*(l-a) percent prediction interval for the 

h-step-ahead forecast, which can be constructed according to 

(%,r " )  (121) 

In this paper, we computed 90 percent prediction interval, so (1-a) = 0.95, and a = 0.05; then 

the estimate of the 5 percent point is the 50th largest value of the Z*(b)s and the estimate of 

the 95 percent point is the 950th largest value of the Z*(b)s, with 

/&,'(&) (1.22) 

where the estimate of the standard error for Yf+h]T is 

Se\b) =  { Z L [ % . , r  -  / ( B  - 1 ) ( 1 . 2 3 )  

and 

Kw'TlJU1» (1-24) 

Step (7): 

Repeat the above steps (1) to (6) 1000 times, then count the number of times that the true 

value for the h-step ahead Yj+h value falls in the prediction interval that uses formula (1.21). 

The results for the actual percentages of times that Yioi, ... , Yno fell into these prediction 

intervals for each of the Prais-Winsten estimators are reported in Tables 1.4 and 1.5. 

Table 1.4 shows the probability of coverage when the asymptotic prediction variance 

measure APVz(l), ignoring the sampling variance in p, is used in the calculation of the 

prediction interval. Results similar to those of simulation are obtained even though the 

numbers are smaller in general. For p = 0.0 and 0.4, the coverage rates for the three 

estimators PW-OLS2, PW-WSLS, and PW-MWSLS perform about the same; the largest 
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difference is about 0.02. As p and/or h increases, the coverage rates corresponding to PW-

OLS2 and PW-WSLS decrease substantially but PW-WSLS performs better than PW-OLS2. 

For p = 0.99 and 1.0 and h = 10, the coverage rate is 0.693 and 0.714, respectively, when the 

PW-OLS2 estimator is used; and the coverage rate is 0.745 and 0.747, respectively, when the 

PW-WSLS estimator is used. The coverage rates when the PW-MWSLS estimator is applied 

remain quite stable: for p = 0.975, 0.99, and 1.0 across all steps, the coverage rates falls 

within 86.0 percent and 90.2 percent. 

The coverage rates using the asymptotic prediction variance APV2(2) in the calculation 

of the prediction interval are presented in Table 1.5. The same qualitative results are 

obtained as those of using the simulation method. The coverage rates for PW-OLS2 and PW-

WSLS improve slightly, compared to the coverage rates calculated when ignoring the 

variance in p; and the coverage rates are still well below the 90 percent when p is close to 1 

and for large h; for example: p = 0.99 and h = 8 (0.732) if the PW-OLS2 estimator is used, 

and in contrast p = 1.0 and h = 10 (0.762) if use the PW-WSLS estimator. The coverage 

rates for the PW-MWSLS estimator improve when p = 0.0, 0.4, 0.8, and 0.95; the values are 

closer to the true 90 percent if we use APV2(2) as the asymptotic variance rather than 

APV2(1). When p - 0.975, 0.99, and 1.0, the coverage rates are above 90 percent compared 

to the results in Table 1.4; especially for h = 4, 8, and 10, the coverage rates generally are 

farther away from 90 percent when APV2(2) is applied than when AP^(l) is applied; but 

these results are still much closer to 90 percent than those coverage rates when PW-OLS2 

and/or PW-WSLS estimators are used. Note that when h = 1 and p = 0.0, 0.4, and 0.8, the 

coverage rates are not as close to 90 percent as are those results in the simulation; these 
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results may be improved if we use different starting values in constructing bootstrap series, 

or if we use a different bootstrap method, like the bias-corrected and accelerated (BCa) 

bootstrap. 

In summary, the results using the bootstrap confirms that the use of the PW-MWSLS 

estimator improves the coverage, compared to using PW-OLS2 and PW-WSLS estimators in 

general when the time series data are best represented by a linear trend model with 

autoregressive errors. 

5. Empirical Example 

We turn to the empirical examples in this section. Many time series can be modeled as a 

linear trend model with autoregressive errors. Ng and Vogelsang (1999) treated seven U.S. 

macroeconomic time series (GDP, investment, exports, imports, final sales, personal income, 

and employee compensation) as linear trend models with AR(4) errors. Roy, Falk, and Fuller 

(1999) modeled U.S. gross national product data as a linear trend model with AR(2) errors, 

and they also modeled interest rate series assumed to follow a linear trend model with AR(3) 

errors in their examples. In our paper, we use the variable real gross domestic product 

(RGDP) as the empirical example because it tends to grow over time, which makes it more 

suitable for a linear trend model. The countries we picked are: Canada, France, Germany, 

Italy, the United Kingdom and the United States. 

First, we analyze the data for each country and decide whether the model of linear trend 

with autoregressive errors is suitable for the series. After choosing and fitting the optimal 

model, we compute the forecasting values and construct the prediction interval using the PW-
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MWSLS estimator. The data are all quarterly data, obtained from International Financial 

Statistics. The ranges of the data are as follows: Canada and the United Kingdom (1957:1-

1999:3), France (1970:1-1999:2), Germany (1960:1-1998:4), Italy (1960:1-1998:4), and the 

United States (1957:1-1999:1). All RGDP series are transformed to natural logs, and labeled 

as LGDP. The software WINRATS is used to conduct the analysis. 

First, we plot the transformed RGDP series in Figure 1.1. A clear upward trend can be 

observed for all countries. So, it is reasonable to assume that LGDP for each country has a 

linear trend. Further, we assume that the error term is serially autocorrelated, which usually 

is true for economic time series data. Therefore, the LGDP is assumed to be a linear trend 

model with AR(p) errors, and has the form: 

So we start by regressing LGDP on a constant and a trend term. For the purpose of 

forecasting, we set aside ten observations for each LGDP series; for example, the data from 

1996:4 to 1999:1 are set aside for the U.S. LGDP series, the total number of observations we 

used in the analysis is T = 159 observations, rather than T = 169. The ordinary least squares 

estimates of a and p are obtained, and the error series {ut} is obtained by 

Next, we check the autocorrelations and the partial autocorrelations of the error series 

{ût}. The estimated coefficients of the first twelve values of ACF and PACF are reported in 

Table 1.6. As we can see, the autocorrelation for all countries starts at relatively high values 

at lag one, and decays slowly with increasing lags; the sample ACFs' shown in Figure 1.2 

LGDPt = a + fit+ ut t = \,2,...,T 

u< =LCi pu,-i+£t 
(1.25) 

û, = LGDP, - â0LS - fiOLSt t = 1, T (1.26) 
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demonstrate the same slow decaying. The sample PACFs in Figure 1.2 can be used to find 

the approximate AR orders of the error series {«,}. To be more specific and accurate, the 

Box-Jenkins procedure is applied, the AIC (Akaike Information Criterion) and SBC 

(Schwartz Bayesian Criterion) are used to select the best AR model. The chosen AR model 

for the series {ût} for each country and the AIC and SBC values are presented in Table 1.7. 

Both the AIC and SBC picked the same model for France, Germany and Italy; for Canada, 

the United Kingdom and the United States, the AIC and SBC choose a different model. We 

will pursue our study using the model chosen by SBC first, since SBC usually picks out the 

most parsimonious model. So we fit AR(1) for the error series {ut} for Italy and the United 

Kingdom, AR(2) for Canada and the United States, AR(3) for France, and AR(5) for 

Germany. 

Fitting the chosen AR model to each of the error series {w,} of the linear trend model, 

the residual {st} is obtained from the fitted model: 

£ , =  « , -  5 X i  P i û t - i  t  =  l ,  . . . , T  (1.27) 

Our model setup is that {et} is uncorrected random variable. So, we need to verify there is 

no autocorrelation in {s, }. Proceed, as in the case for {«,}, to check the autocorrelations 

and the partial autocorrelations of the series {st}. The results show that for Canada, Italy, 

and the United Kingdom, there exist serial autocorrelation in the residual {st}. So for these 

countries' error series {w,}, we fit the best model chosen by AIC again, and the residual 

series {st} show no autocorrelation this time. Therefore, the order of AR model for { w,} for 

all three countries is p = 4. 
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Fit the linear trend model with autoregressive error term for each of the six countries, the 

estimated coefficients of the first twelve values of the ACF and PACF for the residual series 

{st} are reported in Table 1.8. The Ljung-Box Q statistics of the residuals {êt} indicate that 

as a group, lags 1 through 6, 6 through 12, up to 18 through 24, all are not significantly 

different from zero, meaning there do not appear to be any serial correlations in {êt} for 

each of the six countries; and the individual tests on the coefficients of ACF show the same 

results. 

We apply the PW-MWSLS estimator on the LGDP data for Canada, France, Germany, 

Italy, the United Kingdom, and the United States. For the United States, the LGDP series 

follows a linear trend model with AR(2) errors, i.e., model (1.25), is assumed to be p = 2. 

We need a different weighted symmetric regression than one with AR(1) errors, so we follow 

the procedure suggested by Roy, Falk, and Fuller (1999), and we use the U.S. LGDP data to 

demonstrate how to find the PW-MWSLS estimates for the parameters and obtain forecasts. 

For the higher order of AR errors, it is a straightforward extension. 

Note that the linear trend model with AR(2) can be rewritten as 

LGDP, = a + fit + ut t = 1,2,... 

w, = pwM + y/ Aut_x +et p e (-1,1] 

First, after de-trending the U.S. LGDP series using the OLS estimates of a and p, we get w,, 

as shown in (1.26). 

Let pws denote the trend-adjusted WSLS estimator of p obtained by the weighted 

symmetric regression of ut on w,_, and AW,_, , Am,_2, ... , Am,_p+i where Am, = w,- w,_,, and p 
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is the order of the AR model. The fitted weighted symmetric autoregressive equation for the 

U.S. LGDP data is (with standard errors in parentheses): 

Û, = 0.9691 û,_x + 0.3180 àû,_x (1.29) 

(0.01639) (0.07594) 

Then pws is adjusted according to the formulas shown in (1.11), and the modified WSLS 

estimator of p after the adjustment is pMWS = min(p\ 1) = 1. Next, i(/ is re-estimated by 

using an OLS regression of û, - pMWS û,_, on Am,_, , and if/ = 0.3018. 

The previous theoretical part gives the PW-FGLS transformation for the linear trend 

model with AR(1) error. In the case of U.S. LGDP, the linear trend model has AR(2) errors, 

so we quasi-difference the variables LGDP, 1, and t as follows: 

LGDP, = LGDP, - pMWSLGDPt_x - ft ALGDP, 

(1-30) 

X = t ~  P MWS (* ~ 1) ~ V  

for t = 3, 4, ..., T; the initial values are set as LGDPX = LGDP2 =0,1, = 12 =0, and 

7x=72-\-ij/. The PW-FGLS estimate for a is âMWS = 0 and for (3 is f3MWS = 0.0077. 

The estimated forecast value for the LGDP using the PW-MWSLS estimator is 

constructed as: 

LGDPT+W = âMWS + PMWS (T + h) + ûT+h (1.31) 

where 

ûT+h = 6X ûT + 02 ûT_x if h = 1 

=  0 X  û T + ]  + â 2 û T  i f  h  —  2  

= 9\ "r+A-i + ^2 "r+A-2 if h = 3,... ,10 

and 



www.manaraa.com

25 

= PMWS "*™ $ 

To construct the prediction interval for the h = 1, 2, 10 step-ahead forecast for the 

LGDP series for each country after we get the estimates for parameters in the model and the 

forecast values, we calculate the values for APV2(1) and APV:(2); note that since the 

formula for APV is given for the case of AR(1) error, for the U.S., we treat ft as fixed in this 

paper, which allows us to use the asymptotic prediction variance formula directly. The true 

value of the LGDP, together with the lower bound and the higher bound of the prediction 

interval for forecasted estimates of LGDP for each of the six countries, are given in Table 

1.9. The length of each interval also is provided in the same table. The forecast values for 

all step-ahead values of LGDP are quite close to the actual value of LGDP we set aside in the 

beginning, and all lie within the asymptotic prediction intervals. The length of the prediction 

interval using APV2(2) is greater than the length of the prediction interval using APVifl). 

This is reasonable because the former takes into account the sampling variance in the 

estimate of p, and the larger the length of the prediction interval the higher the coverage 

rates. As we demonstrated in the simulation test, the prediction interval using APV2(2) gives 

values much closer to the true probability coverage as p approaches 1, compared to the 

probability of coverage using other estimators, including APV2(1), especially when the 

forecast horizon increases. 

Besides the above examples of predicting the future one- to ten-step-ahead forecasts and 

constructing the asymptotic prediction intervals, following Ng and Vogelsang (1999), we 

calculate the RMSE for 100 one-period-ahead forecasts using PW-OLS2 and PW-MWSLS 

estimates, respectively. For each estimator, we set aside 100 observations first (except for 
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France and Italy, we set aside 50 observations due to fewer available data). For example, the 

available U.S. RGDP data span 1957:1-1999:1, the first forecast we get is based on 

estimation up to 1974:1, and the RMSE is calculated; then we add the next observation from 

the available data set, and the second forecast is obtained together with the RMSE based on 

the extended data set. We continue updating the data set until 1999:1, and get the last one-

step-ahead forecast and the RMSE. After we get 100 RMSEs, we calculate the mean of these 

RMSEs. The results are consistent with our simulation results, when the error series from the 

linear trend model has a p value close to or equal to unity, the PW-MWSLS estimator is 

better than the PW-OLSz estimator in having a smaller RMSE: 

Again, we showed that the forecasts based on PW-MWSLS yield more accurate prediction 

values. 

6. Conclusion 

This paper has extended work by Falk and Roy (2000). They focused on a Monte Carlo 

comparison of the out-of-sample forecasting performances of the OLS, WSLS, MWSLS, 

PW-OLS, PW-WSLS, and PW-MWSLS estimators of the linear trend model with 

autoregressive and possibly unit-root errors. Using the RMSE standard, Falk and Roy 

concluded that the PW-MWSLS estimation method is the best procedure to use to construct 

point forecasts. We use Monte Carlo methods to compare the actual coverage rates of 

PW-OLS2 PW-MWSLS PW-OLS2 PW-MWSLS 

Canada 0.0018 0.0004 

France 0.0145 0.0011 

Germany 0.0051 0.0020 

Italy 0.0334 0.0020 

U.K. 0.0022 0.0009 

U.S. 0.0088 0.0001 
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nominal 90 percent prediction intervals constructed from the PW-OLS2, PW-WSLS, and 

PW-MWSLS estimators in an effort to see whether the best point predictor also leads to 

prediction intervals with the most accurate coverage rates, and the bootstrap method is 

applied to verify the results in a simulation. 

Our main conclusions are as follows. First, as the autoregressive coefficient p increases 

or the forecast horizon h increases, the actual coverage rates of the forecast intervals 

constructed from the PW-OLS2 and PW-WSLS estimators fall substantially below the 

nominal rate. This conclusion does not depend on whether sampling variability in the 

estimate of p is accounted for in computing the asymptotic prediction variance. Second, 

when the sampling variability of p is ignored in computing the asymptotic prediction 

variance the forecast intervals constructed from the PW-MWSLS estimator generally have 

very good coverage rates. The main exceptions occur when p is equal to one and the forecast 

horizon is large, although even in these cases the coverage rates are mostly greater than 85 

percent. Finally, when p is equal to one, the coverage rates for forecast intervals constructed 

from the PW-MWSLS estimator improve substantially if sampling variability in the estimate 

of p is accounted for in computing the asymptotic prediction variance. However, the 

coverage rates when p is close to but less than one deteriorate but still are much better than 

those of other estimators. 

Overall we conclude that point forecasts and forecast intervals constructed from the PW-

MWSLS estimator are preferred to those constructed from OLS or other Prais-Winsten 

estimators. These forecast intervals appear to have good coverage properties whether or not 

sampling variability in the estimate of p is accounted for in computing the asymptotic 



www.manaraa.com

28 

prediction variance. The bootstrap method does not improve the results by simulation as we 

had thought, but future studies may improve our results by applying different bootstrap 

methods. 

Empirical examples are given about how to use the PW-MWSLS estimator to forecast 

and construct the prediction interval. The estimated forecast values for the logarithm of 

national gross domestic product for six countries (Canada, France, Germany, Italy, the 

United Kingdom, and the United States) are quite close to the actual values, and the lengths 

of the prediction intervals are reasonable. As we know from the simulation results, these 

estimates provide an approximately median-unbiased estimator since the root is equal to 

unity, and the prediction intervals give good coverage properties. Thus, we can rely on the 

PW-MWSLS method to uncover the dynamic path of the economic time series, and based on 

the forecasted future values can conduct economic and production planning or policy 

evaluations. 

Notes 

1. Andrews (1993) developed an exact median-unbiased estimator for the first-order AR model, 
which was extended by Andrews and Chen (1994) to an approximately median-unbiased 
estimator for the p-th order AR model. 

2. Canjels and Watson (1997) argued that the PW-FGLS estimators are preferred to the CO-FGLS 
estimators in the linear trend model with AR(1) errors that can have a unit root. 

3. Spitzer and Baillie (1983), relying on the consistency of â , f3, andp, also considered assuming 
that the prediction error variance is entirely due to the random shocks that occur during the 
forecast period, so that APVi = \P21 • The probabilities of the coverage for the prediction 
interval when the above formula is used are not reported because the results are similar to those 
reported in Table 1.2. Results are available upon request. 
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Appendix 

Derivation of the formula for asymptotic prediction variance (APV): 

The linear trend model with AR(1) error is: 

Yt = a + (3t + ut = Xtô + ut (A.1) 

where ut = put.i + st, st is uncorrelated with mean zero and variance CT2: 

Xt = [l t], ÔT = [a (3] 

Rewriting the {ut} sequence as an infinite moving average representation, we have: 

u t  = put-i  +e t  = p ( p U t -2  + 8 t- i)  + 6t  = p 2 U t -2  +  8 t  + pEt-1 = . . .  

= + pVh (A.2) 

Now, substitute ut into (A.l): 

Ut-h 

= f,-, + p"(Yt-h - Xt_hS) (A.3) 

Then, replacing t with T + h in (A.3), we obtain: 

Y-r+h = + Xy+h8 + p"(Yi - Xyô) (A.4) 

The parameters generally are unknown in practice, so the estimated h-step-ahead forecast is 

4+* = XT+h<f + ^(YT-Xy,?) (A.5) 

Then the h-step-ahead prediction error, ej+h, is defined as the difference between (A.4) and 

(A.5): 

®T+h = Yj+h - Yr+h 

= [ Pi£T+h-j + XT+hô + ph(YT - XTÔ)] - [XT+H s + ph (Yx - Xt<£ )] 

= g'^%+w-XW^-ô) + (p"- ^)YT-p"XT8+ p* Xy^ (A.6) 

Using the first-order Taylor expansion: 

/3AYT = phYT+hph-1YT(y3 -p) 
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p " X T S  =phXTô + phXT(<? - ô) + (hp11'1) XTÔ ( p  - p) 

We then can rewrite 6t+h as: 

ew = X'v'e,..-, - Xî-hfà" -8) - hph-|Y[(p-p)4phXT(rf-5) + hp" X,8( p-p) 

= + (phXï - XT+h)(S -S) + hph'l(XT5-YT)( p -p) 

= + (Ph-l)(â -a) + (plT-T-h)(/?-|}) + hpM(XT8-YT)(p-p) 

Then the asymptotic prediction variance is given by: 

APV = or2 pV + var(â)(l - ph )2 + var(/?)(T + A - phT)2 

+ 2(1 - p h ) ( T  +  h -  p h T ) c o \ { â ,  ( 3 ) +  h 2  p 2 ( h ~ ^  var(yô)var(«7.) 

where 

var(uT> = var(YT - XTô) 

= g2/(1 - p2) p < 1 

= Ta2 p = 1 (A.7) 
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Table 1.1. RMSEs for h-step-ahead forecasts in linear trend model with AR(1) errors 

One-Step Ahead RMSEs: 

Rho OLS-1 WSLS MWSLS PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.238 0.234 0.234 0.236 0.236 0.236 
0.40 0.243 0.243 0.237 0.240 0.240 0.238 
0.80 0.260 0.270 0.249 0.253 0.254 0.251 
0.90 0.272 0.294 0.256 0.263 0.264 0.252 
0.95 0.282 0.318 0.240 0.271 0.269 0.228 
0.975 0.286 0.328 0.221 0.270 0.264 0.201 
0.99 0.273 0.320 0.197 0.259 0.253 0.180 
1.00 0.251 0.303 0.168 0.238 0.230 0.139 

Two-Step Ahead RMSEs: 

Rho OLS-1 WSLS MWSLS PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.216 0.214 0.214 0.214 0.214 0.214 
0.40 0.314 0.311 0.310 0.309 0.309 0.311 
0.80 0.446 0.460 0.435 0.434 0.435 0.442 
0.90 0.498 0.534 0.477 0.480 0.482 0.474 
0.95 0.532 0.594 0.460 0.507 0.504 0.439 
0.975 0.544 0.621 0.428 0.510 0.501 0.390 
0.99 0.522 0.610 0.383 0.492 0.479 0.350 
1.00 0.479 0.577 0.324 0.449 0.434 0.269 

Four-Step Ahead RMSEs: 

Rho OLS-1 WSLS MWSLS PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.222 0.219 0.219 0.220 0.220 0.219 
0.40 0.359 0.356 0.355 0.354 0.354 0.355 
0.80 0.698 0.709 0.691 0.675 0.677 0.709 
0.90 0.859 0.906 0.846 0.821 0.825 0.848 
0.95 0.963 1.059 0.854 0.907 0.904 0.823 
0.975 1.003 1.131 0.811 0.930 0.915 0.745 
0.99 0.971 1.121 0.731 0.899 0.878 0.672 
1.00 0.886 1.057 0.614 0.815 0.790 0.511 

Eight-Step Ahead RMSEs: 

Rho OLS-1 WSLS MWSLS PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.234 0.232 0.232 0.232 0.232 0.232 
0.40 0.387 0.383 0.383 0.380 0.380 0.380 
0.80 0.971 0.969 0.964 0.935 0.936 0.993 
0.90 1.371 1.408 1.383 1.295 1.301 1.403 
0.95 1.660 1.772 1.519 1.536 1.534 1.482 
0.975 1.785 1.958 1.495 1.621 1.603 1.394 
0.99 1.753 1.968 1.371 1.575 1.545 1.272 
1.00 1.588 1.842 1.139 1.407 1.369 0.957 

Ten-Step Ahead RMSEs: 

Rho OLS-1 WSLS MWSLS PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.241 0.238 0.238 0.238 0.238 0.238 
0.40 0.398 0.393 0.393 0.390 0.390 0.390 
0.80 1.053 1.046 1.043 1.012 1.013 1.073 
0.90 1.566 1.591 1.585 1.473 1.479 1.615 
0.95 1.959 2.061 1.806 1.798 1.798 1.772 
0.975 2.138 2.312 1.810 1.924 1.905 1.698 
0.99 2.114 2.336 1.674 1.874 1.841 1.561 
1.00 1.910 2.179 1.387 1.662 1.620 1.170 
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Table 1.2. Simulation results of the probability of coverage using APV2(1) 

One-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.905 0.889 0.897 
0.40 0.895 0.901 0.905 
0.80 0.893 0.889 0.899 
0.90 0.885 0.896 0.894 
0.95 0.902 0.886 0.897 
0.975 0.898 0.869 0.919 
0.99 0.896 0.870 0.921 
1.00 0.890 0.879 0.892 

Two-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.895 0.904 0.886 
0.40 0.899 0.898 0.911 
0.80 0.886 0.885 0.907 
0.90 0.855 0.883 0.902 
0.95 0.894 0.882 0.903 
0.975 0.878 0.860 0.894 
0.99 0.872 0.865 0.916 
1.00 0.855 0.869 0.884 

Four-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.894 0.908 0.904 
0.40 0.908 0.904 0.902 
0.80 0.853 0.867 0.891 
0.90 0.874 0.849 0.897 
0.95 0.855 0.853 0.900 
0.975 0.851 0.835 0.899 
0.99 0.816 0.837 0.918 
1.00 0.822 0.838 0.884 

Eight-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.888 0.896 0.900 
0.40 0.898 0.886 0.914 
0.80 0.857 0.844 0.896 
0.90 0.827 0.828 0.881 
0.95 0.802 0.818 0.890 
0.975 0.791 0.786 0.882 
0.99 0.775 0.794 0.899 
1.00 0.773 0.767 0.862 

Ten-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.917 0.889 0.914 
0.40 0.888 0.891 0.898 
0.80 0.843 0.857 0.903 
0.90 0.820 0.831 0.882 
0.95 0.800 0.800 0.886 
0.975 0.786 0.777 0.869 
0.99 0.739 0.776 0.893 
1.00 0.752 0.768 0.836 
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Table 1.3. Simulation results of the probability of coverage using APV2(2) 

One-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.907 0.891 0.899 
0.40 0.897 0.904 0.908 
0.80 0.897 0.891 0.904 
0.90 0.892 0.902 0.896 
0.95 0.909 0.894 0.911 
0.975 0.906 0.878 0.927 
0.99 0.898 0.872 0.932 
1.00 0.894 0.881 0.904 

Two-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.896 0.906 0.888 
0.40 0.900 0.899 0.912 
0.80 0.887 0.893 0.912 
0.90 0.857 0.887 0.911 
0.95 0.899 0.884 0.919 
0.975 0.888 0.867 0.920 
0.99 0.877 0.877 0.940 
1.00 0.861 0.878 0.910 

Four-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.897 0.912 0.904 
0.40 0.911 0.905 0.904 
0.80 0.860 0.872 0.896 
0.90 0.879 0.859 0.909 
0.95 0.862 0.865 0.924 
0.975 0.857 0.844 0.926 
0.99 0.826 0.849 0.948 
1.00 0.832 0.846 0.923 

Eight-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.893 0.899 0.901 
0.40 0.898 0.887 0.915 
0.80 0.861 0.849 0.900 
0.90 0.833 0.836 0.907 
0.95 0.816 0.822 0.921 
0.975 0.807 0.796 0.914 
0.99 0.791 0.809 0.929 
1.00 0.789 0.774 0.901 

Ten-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.918 0.893 0.914 
0.40 0.889 0.891 0.899 
0.80 0.847 0.857 0.905 
0.90 0.823 0.836 0.896 
0.95 0.812 0.810 0.921 
0.975 0.797 0.782 0.910 
0.99 0.754 0.787 0.927 
1.00 0.763 0.776 0.881 
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Table 1.4. Bootstrap results of the probability of coverage using APV2(1) 

One-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.859 0.861 0.858 
0.40 0.791 0.785 0.811 
0.80 0.794 0.790 0.825 
0.90 0.815 0.802 0.868 
0.95 0.817 0.803 0.853 
0.975 0.807 0.817 0.902 
0.99 0.786 0.834 0.894 
1.00 0.786 0.826 0.887 

Two-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.895 0.892 0.905 
0.40 0.848 0.859 0.863 
0.80 0.815 0.809 0.836 
0.90 0.811 0.808 0.862 
0.95 0.829 0.805 0.877 
0.975 0.803 0.811 0.891 
0.99 0.787 0.833 0.891 
1.00 0.782 0.842 0.891 

Four-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.878 0.892 0.892 
0.40 0.880 0.869 0.881 
0.80 0.831 0.814 0.852 
0.90 0.823 0.802 0.836 
0.95 0.813 0.800 0.855 
0.975 0.781 0.814 0.893 
0.99 0.771 0.814 0.897 
1.00 0.791 0.811 0.879 

Eight-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.897 0.894 0.890 
0.40 0.880 0.875 0.896 
0.80 0.852 0.834 0.868 
0.90 0.797 0.799 0.873 
0.95 0.764 0.778 0.874 
0.975 0.742 0.777 0.884 
0.99 0.725 0.786 0.860 
1.00 0.751 0.785 0.874 

Ten-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.891 0.899 0.905 
0.40 0.895 0.882 0.902 
0.80 0.837 0.823 0.864 
0.90 0.785 0.777 0.852 
0.95 0.753 0.749 0.882 
0.975 0.714 0.741 0.876 
0.99 0.693 0.745 0.860 
1.00 0.714 0.747 0.872 
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Table 1.5. Bootstrap results of the probability of coverage using APV2(2) 

One-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.863 0.866 0.861 
0.40 0.792 0.791 0.811 
0.80 0.796 0.793 0.829 
0.90 0.817 0.803 0.871 
0.95 0.7821 0.804 0.860 
0.975 0.809 0.821 0.918 
0.99 0.791 0.838 0.903 
1.00 0.789 0.831 0.900 

Two-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.898 0.894 0.907 
0.40 0.850 0.859 0.866 
0.80 0.817 0.814 0.841 
0.90 0.815 0.813 0.871 
0.95 0.829 0.811 0.890 
0.975 0.808 0.816 0.910 
0.99 0.793 0.840 0.909 
1.00 0.787 0.848 0.914 

Four-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.879 0.894 0.892 
0.40 0.893 0.870 0.881 
0.80 0.834 0.821 0.855 
0.90 0.811 0.805 0.859 
0.95 0.812 0.804 0.894 
0.975 0.807 0.823 0.926 
0.99 0.791 0.826 0.932 
1.00 0.803 0.820 0.911 

Eight-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.900 0.895 0.893 
0.40 0.883 0.879 0.897 
0.80 0.856 0.835 0.874 
0.90 0.801 0.807 0.900 
0.95 0.770 0.784 0.914 
0.975 0.752 0.788 0.931 
0.99 0.732 0.798 0.924 
1.00 0.763 0.802 0.933 

Ten-Step Ahead: 

Rho PW-OLS2 PW-WSLS PW-MWSLS 
0.00 0.891 0.900 0.906 
0.40 0.897 0.883 0.903 
0.80 0.838 0.824 0.869 
0.90 0.789 0.784 0.871 
0.95 0.762 0.754 0.915 
0.975 0.719 0.756 0.928 
0.99 0.703 0.759 0.919 
1.00 0.728 0.762 0.933 
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Table 1.6. Autocorrelations and partial autocorrelations of the series { û t }  

Country 

Order Canada France Germany Italy U.K. U.S. 

ACF 1 0.9792 0.9274 0.9357 0.9365 0.9500 0.9814 

2 0.9534 0.8505 0.8848 0.8453 0.9008 0.9624 

3 0.9253 0.7570 0.8356 0.7402 0.8431 0.9435 

4 0.8929 0.6660 0.7934 0.6374 0.7684 0.9241 

5 0.8608 0.5743 0.7196 0.5486 0.6964 0.9035 

6 0.8292 0.4901 0.6563 0.4828 0.6174 0.8831 

7 0.7980 0.4141 0.5978 0.4282 0.5308 0.8632 

8 0.7671 0.3427 0.5469 0.3848 0.4550 0.8438 

9 0.7373 0.2803 0.4959 0.3487 0.3944 0.8250 

10 0.7062 0.2159 0.4525 0.3004 0.3371 0.8068 

11 0.6721 0.1507 0.4163 0.2410 0.2859 0.7885 

12 0.6386 0.0862 0.3760 0.1690 0.2446 0.7699 

PACF 1 0.9792 0.9274 0.9357 0.9365 0.9500 0.9814 

2 -0.1340 -0.0690 0.0744 -0.2589 -0.0167 -0.0211 

3 -0.0552 -0.1593 -0.0022 -0.1215 -0.1136 -0.0053 

4 -0.1109 -0.0303 0.0335 -0.0039 -0.2103 -0.0248 

5 0.0178 -0.0483 -0.2679 0.0528 -0.0147 -0.0409 

6 -0.0031 -0.0066 -0.0011 0.0938 -0.0886 -0.0055 

7 -0.0013 0.0012 0.0053 -0.0335 -0.1119 0.0022 

8 -0.0196 -0.0331 0.0148 0.0088 0.0538 0.0051 

9 0.0088 0.0002 0.0457 0.0072 0.1531 0.0049 

10 -0.0598 -0.0733 0.0142 -0.1460 0.0103 0.0063 

11 -0.0863 -0.0698 0.0307 -0.0794 -0.0392 -0.0174 

12 0.0057 -0.0439 -0.0692 -0.0948 0.0238 -0.0166 

Ljung-Box Q-

statistics 
6 823.85 

(0.00) 
358.09 

(0.00) 
595.06 

(0.00) 
341.58 

(0.00) 
644.83 

(0.00) 
699.08 

(0.00) 

12 1364.67 
(0.00) 

410.99 
(0.00) 

819.30 
(0.00) 

415.67 
(0.00) 

799.80 
(0.00) 

1007.86 
(0.00) 

18 1647.14 
(0.00) 

417.55 
(0.00) 

876.46 
(0.00) 

419.89 
(0.00) 

825.25 
(0.00) 

1121.69 
(0.00) 

24 1744.92 
(0.00) 

452.00 
(0.00) 

882.19 
(0.00) 

430.27 
(0.00) 

829.23 
(0.00) 

1146.30 
(0.00) 

Note: The numbers in the parenthesis are the p-value of the Ljung-Box Q-statistics. 
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Table 1.7. The AIC and SBC values for selecting AR models for error series {ut} 

Country AIC (SBC) Values 

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) 

Canada -646.46 
(-643.42) 

-654.68 
(-648.59)" 

-654.37 
(-645.24) 

-655.33* 
(-643.16) 

-654.27 
(-639.05) 

-653.48 
(-635.22) 

France -543.30 
(-540.68) 

-551.31 
(-546.06) 

-559.46* 
(-551.59)" 

-557.52 
(-547.02) 

-556.22 
(-543.09) 

-555.69 
(-539.94) 

Germany 
-473.84 

(-470.90) 
-473.20 

(-467.32) 
-471.95 

(-463.13) 
-469.99 

(-458.22) 
-488.29* 

(-473.59)** 
-486.66 

(-469.01) 

Italy 
-488.05 

(-485.45) 
-520.63 

(-515.42)" 
-518.77 

(-510.95) 
-520.93* 

(-510.51) 
-518.96 

(-505.94) 
-520.84 

(-505.21) 

U.K. -628.03 
(-624.99)** 

-626.07 
(-619.98) 

-625.38 
(-616.25) 

-629.91* 
(-617.73) 

-628.07 
(-612.86) 

-626.37 
(-6O8.il) 

U.S. 
-653.46 

(-650.43) 
-666.37 

(-660.31)** 
-666.48* 

(-657.39) 
-664.48 

(-652.36) 
-662.51 

(-647.35) 
-662.53 

(-644.35) 

Note: * indicates the best model chosen by AIC, and ** indicates the best model chosen by SBC. 
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Table 1.8. Autocorrelations and partial autocorrelations of the series {St} 

Country 

Order Canada France Germany Italy U.K. U.S. 

ACF 1 0.0058 -0.0084 0.0165 0.0040 -0.0060 -0.0274 

2 0.0139 0.0123 0.0110 -0.0528 -0.0235 0.0635 

3 0.0148 0.0040 0.0332 0.0251 -0.0534 0.0069 

4 -0.0986 -0.0972 0.0364 0.1077 0.0271 0.0404 

5 0.0600 0.0616 -0.0548 -0.1543 0.0596 -0.1056 

6 -0.0209 -0.0523 -0.0240 -0.0394 0.1273 0.0137 

7 0.0384 0.0882 -0.0845 0.0221 -0.0870 0.0106 

8 -0.0436 -0.0599 -0.0881 -0.0071 -0.1269 -0.1277 

9 0.0809 -0.0086 -0.0162 0.0618 0.0487 0.0069 

10 0.1380 0.2424 0.0336 0.1159 0.0321 0.0869 

11 -0.0948 0.1067 0.0135 0.0869 -0.0294 0.0963 

12 0.0095 -0.0885 -0.0093 0.0091 -0.1420 -0.0499 

PACF 1 0.0058 -0.0084 0.0165 0.0040 -0.0060 -0.0274 

2 0.0138 0.0122 0.0108 -0.0528 -0.0235 0.0628 

3 0.0146 0.0042 0.0328 0.0256 -0.0537 0.0103 

4 -0.0990 -0.0974 0.0353 0.1051 0.0259 0.0371 

5 0.0614 0.0605 -0.0567 -0.1548 0.0577 -0.1053 

6 -0.0197 -0.0498 -0.0242 -0.0270 0.1274 0.0037 

7 0.0407 0.0887 -0.0854 0.0040 -0.0807 0.0237 

8 -0.0567 -0.0709 -0.0838 -0.0157 -0.1212 -0.1292 

9 0.0961 0.0038 -0.0073 0.1013 0.0545 0.0072 

10 0.1300 0.2343 0.0405 0.1001 0.0130 0.0947 

11 -0.0920 0.1378 0.0235 0.0831 -0.0516 0.1061 

12 -0.0099 -0.1297 -0.0123 0.0213 -0.1453 -0.0471 

Ljung-Box Q- 6 2.321 1.814 0.944 4.397 3.940 2.908 
statistics (0.313) (0.612) (0.331) (0.111) (0.139) (0.573) 

12 8.776 12.389 3.450 7.333 12.094 8.966 12 
(0.362) (0.192) (0.841) (0.501) (0.147) (0.535) 

18 16.272 13.934 10.185 11.120 22.859 14.817 18 
(0.297) (0.531) (0.679) (0.677) (0.063) (0.538) 

24 21.747 19.245 11.325 13.166 27.741 18.109 24 
(0.354) (0.569) (0.912) (0.870) (0.116) (0.699) 

Note: The numbers in the parenthesis are the p-value of the Ljung-Box Q-statistics. 
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Table 1.9. Actual values, forecast values, and prediction intervals for the LGDP 

Country LGDP LGDP APV2(1) APV2(2) 
Actual Forecast PI Length PI Length 

Canada 1997:2 4.6542 4.6530 (4.6373,4.6687) 0.0314 (4.6239,4.6822) 0.0583 
1997:3 4.6684 4.6620 (4.6396,4.6844) 0.0447 (4.6081,4.7159) 0.1078 
1997:4 4.6763 4.6713 (4.6436,4.6989) 0.0552 (4.5927,4.7498) 0.1572 
1998:1 4.6832 4.6804 (4.6483,4.7126) 0.0643 (4.5772,4.7837) 0.2065 
1998:2 4.6858 4.6896 (4.6533,4.7258) 0.0725 (4.5617,4.8174) 0.2557 
1998:3 4.6922 4.6987 (4.6587,4.7387) 0.0800 (4.5462,4.8512) 0.3049 
1998:4 4.7038 4.7078 (4.6643,4.7514) 0.0871 (4.5308,4.8849) 0.3542 
1999:1 4.7139 4.7170 (4.6701,4.7639) 0.0938 (4.5153,4.9187) 0.4034 
1999:2 4.7215 4.7261 (4.6760,4.7762) 0.1002 (4.4998,4.9524) 0.4526 
1999:3 4.7330 4.7352 (4.6821,4.7884) 0.1064 (4.4843,4.9861) 0.5018 

France 1997:1 4.6243 4.6239 (4.5495,4.6983) 0.1488 (4.5441,4.7037) 0.1596 
1997:2 4.6309 4.6250 (4.5471,4.7029) 0.1558 (4.5289,4.7210) 0.1921 
1997:3 4.6392 4.6368 (4.5534,4.7201) 0.1667 (4.5187,4.7549) 0.2362 
1997:4 4.6498 4.6459 (4.5556,4.7362) 0.1807 (4.5028,4.7890) 0.2863 
1998:1 4.6590 4.6386 (4.5401,4.7371) 0.1969 (4.4689,4.8083) 0.3395 
1998:2 4.6675 4.6298 (4.5224,4.7372) 0.2149 (4.4326,4.8270) 0.3943 
1998:3 4.6723 4.6444 (4.5274,4.7614) 0.2340 (4.4194,4.8695) 0.4501 
1998:4 4.6787 4.6686 (4.5416,4.7956) 0.2540 (4.4154,4.9218) 0.5064 
1999:1 4.6822 4.6616 (4.5243,4.7989) 0.2746 (4.3802,4.9430) 0.5628 
1999:2 4.6884 4.6306 (4.4827,4.7784) 0.2956 (4.3209,4.9402) 0.6192 

Germany 1996:3 4.6124 4.6190 (4.5084,4.7296) 0.2212 (4.5077,4.7303) 0.2226 
1996:4 4.6177 4.6308 (4.5195,4.7421) 0.2226 (4.5179,4.7436) 0.2257 
1997:1 4.6206 4.6418 (4.5294,4.7543) 0.2248 (4.5265,4.7572) 0.2307 
1997:2 4.6307 4.6577 (4.5438,4.7716) 0.2279 (4.5391,4.7763) 0.2373 
1997:3 4.6357 4.5800 (4.4642,4.6957) 0.2316 (4.4573,4.7026) 0.2453 

1997:4 4.6408 4.6056 (4.4877,4.7235) 0.2359 (4.4784,4.7329) 0.2545 
1998:1 4.6538 4.6181 (4.4977,4.7384) 0.2407 (4.4857,4.7504) 0.2647 

1998:2 4.6536 4.6376 (4.5145,4.7606) 0.2461 (4.4996,4.7755) 0.2758 
1998:3 4.6624 4.6236 (4.4976,4.7495) 0.2519 (4.4798,4.7674) 0.2876 
1998:4 4.6586 4.6488 (4.5198,4.7778) 0.2580 (4.4988,4.7987) 0.3000 

Italy 1996:3 4.6160 4.6121 (4.6002,4.6240) 0.0238 (4.5967,4.6275) 0.0308 
1996:4 4.6123 4.6139 (4.5969,4.6309) 0.0340 (4.5881,4.6398) 0.0517 
1997:1 4.6111 4.6196 (4.5985,4.6407) 0.0421 (4.5837,4.6556) 0.0719 
1997:2 4.6273 4.6261 (4.6015,4.6506) 0.0492 (4.5801,4.6720) 0.0919 
1997:3 4.6344 4.6331 (4.6054,4.6609) 0.0556 (4.5772,4.6890) 0.1118 
1997:4 4.6409 4.6396 (4.6089,4.6704) 0.0615 (4.5738,4.7054) 0.1316 
1998:1 4.6362 4.6457 (4.6122,4.6792) 0.0671 (4.5700,4.7214) 0.1514 
1998:2 4.6411 4.6513 (4.6151,4.6875) 0.0724 (4.5657,4.7369) 0.1712 
1998:3 4.6472 4.6568 (4.6180,4.6956) 0.0775 (4.5613,4.7523) 0.1910 
1998:4 4.6427 4.6623 (4.6210,4.7035) 0.0825 (4.5569,4.7676) 0.2107 



www.manaraa.com

41 

Table 1.9. (continued) 

Country LGDP 
Actual 

LGDP 
Forecast 

APV2(1) APV2(2) Country LGDP 
Actual 

LGDP 
Forecast PI Length PI Length 

United 1997:2 4.6609 4.6660 (4.5477,4.7844) 0.2367 (4.5467,4.7854) 0.2387 

Kingdom 1997:3 4.6708 4.6800 (4.5610,4.7991) 0.2381 (4.5583,4.8017) 0.2434 
1997:4 4.6754 4.6944 (4.5743,4.8145) 0.2402 (4.5691,4.8197) 0.2506 
1998:1 4.6808 4.7092 (4.5876,4.8307) 0.2431 (4.5793,4.8391) 0.2598 
1998:2 4.6855 4.7238 (4.6005,4.8470) 0.2465 (4.5884,4.8591) 0.2706 
1998:3 4.6908 4.7382 (4.6130,4.8634) 0.2504 (4.5969,4.8795) 0.2826 
1998:4 4.6913 4.7525 (4.6252,4.8798) 0.2547 (4.6048,4.9002) 0.2955 
1999:1 4.6938 4.7665 (4.6368,4.8962) 0.2593 (4.6120,4.9210) 0.3089 
1999:2 4.7011 4.7803 (4.6481,4.9124) 0.2643 (4.6188,4.9417) 0.3229 
1999:3 4.7088 4.7938 (4.6590,4.9285) 0.2694 (4.6252,4.9623) 0.3371 

United States 1996:4 4.6530 4.6496 (4.6337,4.6654) 0.0317 (4.6222,4.6769) 0.0547 
1997:1 4.6633 4.6570 (4.6345,4.6796) 0.0452 (4.6071,4.7070) 0.0999 
1997:2 4.6730 4.6647 (4.6368,4.6925) 0.0557 (4.5923,4.7371) 0.1448 
1997:3 4.6833 4.6723 (4.6400,4.7047) 0.0647 (4.5776,4.7671) 0.1896 
1997:4 4.6906 4.6800 (4.6437,4.7164) 0.0727 (4.5629,4.7972) 0.2343 
1998:1 4.7041 4.6877 (4.6476,4.7278) 0.0802 (4.5482,4.8272) 0.2790 
1998:2 4.7086 4.6954 (4.6519,4.7390) 0.0871 (4.5336,4.8573) 0.3237 
1998:3 4.7176 4.7031 (4.6563,4.7499) 0.0937 (4.5189,4.8873) 0.3684 
1998:4 4.7322 4.7108 (4.6608,4.7608) 0.0999 (4.5043,4.9174) 0.4131 
1999:1 4.7428 4.7185 (4.6655,4.7715) 0.1059 (4.4896,4.9474) 0.4578 
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Figure 1.1. The logarithm of the quarterly RGDP series 
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CHAPTER II. 

INFLATION EXPECTATION RECONSIDERED 

1. Introduction 

It is widely acknowledged that inflation will not only affect individuals but also cause 

problems for the whole economy. Inflation can affect individuals through the erosion of real 

income and purchasing power. Its uncertainty may keep the public from spending and keep 

firms from investing. Inflation also will affect a country's imports and exports if domestic 

prices increase faster than those in other countries, thus having a negative effect on the 

balance of payments. The central bank's main task is to achieve and maintain price stability, 

or keep inflation low and stable, which is a prerequisite for sustainable economic 

development over the longer term. 

To achieve the objective of price stability, central banks use intermediate objectives for 

monetary policy, such as the money supply, the exchange rate, the level of interest rates, or 

the volume of credit extended by banking institutions. Since the early 1990s, a number of 

central banks (for example, New Zealand, Canada, and the United Kingdom) introduced a 

new monetary policy strategy based on the direct targeting of a particular measure of 

inflation. The targets are expressed either as a range for inflation over time, or as a path for 

the inflation rate (Kahn & Parrish, 1998). By focusing on inflation targeting, monetary 

policy helps to moderate fluctuations in employment and domestic output. 

Although the U.S. Fed has not formally adopted inflation-targeting, Clarida, Gali, and 

Gertler (2000) showed that the Fed's conduct of policy was consistent with a version of 

inflation-targeting called the Taylor Principle during the 1980s and 1990s, a period when 
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inflation in the U.S. was reduced substantially and subsequently was maintained at a low, 

stable level. The Taylor Principle (Taylor, 1993) says that a central bank should focus on 

hitting a chosen target for the inflation rate, so long as output is not too far from the level 

consistent with the natural rate of unemployment. To do so, the central bank first chooses a 

target for the long-run nominal interest rate based on its inflation target. When the expected 

rate of inflation rises, the central bank should act aggressively by raising the nominal interest 

rate above its long-run target by more than the increase in expected inflation, which results in 

an increase in the real interest rate, which in turn reduces demand and contains the inflation. 

In short, the central bank will be successful in balancing its concerns about inflation and 

output if it reacts to expected inflation with an increase in the nominal interest rate that is 

larger than the increase in expected inflation. Then the problem comes down to the 

measurement of expected inflation or of indicators of expected inflation. 

Moreover, getting good estimated time series of inflation expectations is important due 

to the role played by expected rate of inflation in various economic theories: models of wage 

and price determination, the Fisher effect on nominal interest rates, the Lucas supply curve, 

the Phillips curve, etc. It is important particularly because expected inflation is highly 

correlated with the time path of real output and inflation. For example, the most convincing 

explanations of the coexistence of high and increasing unemployment with rapid, 

accelerating inflation contain an expectations hypothesis that prices rise partly due to people 

expecting them to rise. In empirical studies, there has been a trend toward using more direct 

measures of inflation expectation rather than using simple proxies. 

Hamilton (1992) noted that commodity futures prices often lead to revisions of the 

inference about aggregate price expectations, and proposed a new procedure incorporating 
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the commodity futures prices to construct the inflation expectations taking into account not 

only the information available at the time of people's forecast, but also the information 

inferred by econometricians after the fact, in an effort to estimate the people's true inflation 

expectations. We adopt the innovative methodology of Hamilton to construct an expectation 

of inflation series, which gives a different inflation expectation measure that may help us to 

better understand the economic theories related with inflation expectation. Furthermore, the 

inflation expectation constructed using such methodology can be decomposed into 

anticipated and unanticipated parts, which can help us distinguish between different 

macroeconomic theories that explain the linkage between the nominal disturbance and real 

economic activity, and assess the credibility of the Fed's monetary policy. 

In Section 2, we review the literature on different approaches to measuring inflation 

expectations, hypotheses of expectation formation, and the theoretical and empirical studies 

in which expected inflation plays an important role. Section 3 introduces the underlying 

theory of the methodology and the data we will use in this paper to form the expectation of 

inflation. Section 4 presents the empirical results, and Section 5 provides the comparison of 

the inflation expectations constructed from the model presented in this paper and the inflation 

expectations forecasted from the simple univariate time series model and the interest rate 

model. The conclusions and possible future research topics are discussed in the final section, 

section 6. 
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2. Literature Review 

2.1. Theoretical and Empirical Studies Using Inflation Expectations 

Inflation expectations play an important role in some key economic theories, such as the 

Fisher effect hypothesis and the Phillips curve. Empirically evaluating these theories can 

provide a better understanding of the economy and therefore may provide helpful 

information about the future conditions of the economy. 

2.1.1. Fisher hypothesis 

Irving Fisher's hypothesis about the impact of inflationary expectations on nominal interest 

rates has been studied extensively. Fisher (1930) claimed that with perfect foresight and a 

well-functioning capital market, there is a one-to-one relationship between inflation and 

nominal interest rates, with real interest rates unrelated to the expected rate of inflation and 

determined entirely by the real factors in an economy. However, with limited information, 

Fisher hypothesized that the expected real rate of interest re is the nominal rate i minus the 

expected rate of inflation 7te: 

re = i - 7te (2.1) 

Equivalently, the Fisher hypothesis can be summarized in mathematical terms as: 

i, = E,[ Ttt] + E,[ rt] (2.2) 

where here and in the remainder of this paper, Et[«] denotes the expectation conditional on 

period t information. 

In the long run, the economy returns to full employment level of output, the real interest 

rate returns to its full-employment level r*, the actual inflation and expected inflation 



www.manaraa.com

48 

converge (71e = 7t), providing the long run relationship among the nominal interest rate i, the 

inflation rate n, and the real interest rate r*: r* = i - n. 

In previous work, as pointed out by Mishkin (1992), examination of the Fisher effect 

involved testing for a significant correlation of the level of interest rates and the level of 

future inflation, i.e., testing for a significant coefficient for the term z™ in the regression 

equation: 

where n(
m is the m-period future inflation rate from time t to t + m; and z'f is the m-period 

interest rate known at time t. However, this regression did not make a distinction between 

short-run and long-run forecasting ability, hence did not distinguish the short-run Fisher 

effect (a change in the interest rate is associated with an immediate change in the expected 

inflation rate) from the long-run Fisher effect (the expected inflation rate will tend to be high 

when the interest rate is higher for a long period of time). 

In addition, findings from this regression might be spurious if the short-term interest 

rates and future inflation rates had unit roots. In this case, the correct procedure to test the 

long-run Fisher effect is to test for cointegration between n™ and z'f in the regression (2.3). 

To look at it another way, this is to test for unit roots in the ex ante real interest rate under the 

assumption of rational expectations: 

To test for a short-run Fisher effect, we should expect to find a significant positive coefficient 

pm in the following regression: 

(2.3) 

rr,"= I,"-£,[*,"] (2.4) 

E, [< ] - [<_, ] = am+fim [/," - /- ] + < (2.5) 
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Empirical studies give inconsistent conclusions about the presence of the Fisher effect. 

For example, supporting evidence is given by Fama (1975), Atkins (1989), Bonham (1991) 

and Wallace and Warner (1993), while Hess and Bicksler (1975), Carlson (1977), and Inder 

and Silvapulle (1993) found no evidence of the Fisher relationship1. Therefore, alternative 

and more accurate estimates of inflation expectation may be helpful in resolving the puzzle. 

2.1.2. Phillips curve 

The Phillips Curve describes an empirical relationship between price or wage inflation and 

the unemployment rate: the higher the rate of unemployment, the lower the rate of inflation, 

suggesting a trade-off between inflation and unemployment. The Phillips Curve did well in 

the 1950s and 1960s, but it failed to explain a period of coexistence of high unemployment 

and high inflation in the 1970s. 

To explain such a change, Friedman (1968) and Phelps (1967) pointed out that the 

original Phillips Curve failed to take into account the effects of expected inflation on wage 

setting, and proposed an expectation-augmented Phillips Curve. The Friedman-Phelps theory 

suggested that the inflation adjustment compensated for expected inflation, so the actual 

inflation was determined by both expected inflation and unemployment (or the level of 

output): 

71 = 71e + X(Y - Y*) (2.6) 

where Y is the level of output, Y* is the full-employment level of output, and if is the 

growth rate of wages that represents inflation adjustment or expected inflation. This 

modified Phillips Curve explains why prices may be rising even when unemployment is high 

if expected inflation is sufficiently high. 



www.manaraa.com

50 

So the traditional Phillips Curve emphasized some output gap measure as the relevant 

indicator of real economic activity, while under certain conditions, as shown by Gali and 

Gertler (2000), the Phillips Curve could be explained as the relationship between marginal 

cost and the output gap with: 

7tt = AJcxt + pEt[7it+i] (2.7) 

where xt = Yt - Yt*, k is the output elasticity of marginal cost, and the product kxt represents 

marginal cost at time t. Therefore, the new Phillips Curve states that inflation depends 

positively on the output gap and a cost-push term reflecting the influence of expected 

inflation. 

A number of researchers have also proposed a hybrid version of the Phillips Curve, 

which is to let inflation depend on a convex combination of expected future inflation and 

lagged inflation, with the lagged inflation term helping to capture inflation persistence: 

7tt = ÔXt + (1 - <|))Et[7ttfi] + <t>7Tt-i (2.8) 

Despite the efforts researchers have put into explaining the relationship between 

inflation and unemployment, the results are inconclusive on whether the Phillips curve is 

linear or non-linear, and whether there is asymmetry present in the inflation-unemployment 

trade-off. Improved estimates of expected inflation might help us better understand the 

Phillips Curve. 

2.1.3. Inflation expectation and monetary policy 

Clarida, Gali, and Gertler (2000) studied the role of expected inflation in the monetary policy 

rule. They considered a simple baseline policy rule in which the federal funds rate was the 



www.manaraa.com

51 

instrument of monetary policy. The policy rule called for adjustment of the funds rate to the 

gaps between expected inflation and output and their respective target levels: 

rt* =r* + p(Et[7tt,k] - 7i*) + yE,[xt>q] (2.9) 

where rt* is the target rate for the nominal federal funds rate in period t; r* is the desired 

nominal rate when both inflation and output are at their target levels; 7tt,k denotes the 

percentage change in the price level between periods t and t+k; 7t* is the target for inflation; 

xt,q is a measure of the average output gap between period t and t+q. This forward looking 

specification of the policy rule was assumed to provide a reasonably good description of the 

way major central banks around the world behave. Such a specification also allowed the 

central bank to consider a broad array of information in forming beliefs about the future 

conditions of the economy. 

Attempts to explain the linkage between real economic activity and nominal 

disturbances fall into two classes of competing macroeconomic theories: the Keynesian-style 

models by Fischer (1977) and Taylor (1980) that stress the impact of anticipated monetary 

policy on real economic activity, and the neoclassical monetary business cycle models of 

Lucas (1973) or Sargent and Wallace (1975) that emphasize the effect of unanticipated 

changes in monetary policy on real economic activity. The disinflation that occurred in the 

early 1980's is widely noticed and used by economists to shed light on the competing 

economic theories. Such experience, as pointed out by Dotsey and De Vara (1995), was 

useful to discriminate different sets of theories if the disinflation was largely anticipated 

implying that the Fed's monetary policy was credible. They applied the method proposed by 

Hamilton (1992) to decompose the public's expected inflation into anticipated inflation and 
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unanticipated inflation over the period of 1970 to 1986, and concluded that the disinflation 

was largely unanticipated and that the Fed lacked credibility. 

2.2. Measuring Expected Inflation 

One way to obtain an estimate of the expected inflation rate is by direct measures derived 

from data generated by surveys. There are two types of surveys as pointed out by Smith 

(1982). The Livingston surveys for the United States ask for the exact figure expected for 

the value of a specific price index at some future point in time, which can be translated easily 

into expected inflation. In contrast, the Gallup surveys in the United Kingdom ask 

respondents to indicate the expected direction of inflation change. 

2.2.1. Gallup surveys 

Carlson and Parkin (1975) developed a technique for quantifying the results of the four-

category Gallup 1961 survey: go up, go down, stay the same, and don't know. Based on this 

technique, they obtained a time series of the expected rate of inflation in the United 

Kingdom. In particular, they showed 

=-& 

\ a t ~ b u  

(2.10) 

where n] is the expectation formed in period t of inflation for the next period t+1, 5t is a 

scaling factor, at refers to the proportions of respondents expecting prices not to rise, while bt 

refers to the proportions of respondents expecting prices to fall. They concluded that 

expected inflation might be viewed as being generated by a second-order error-learning 

process when the inflation rate was high: 
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< -<i -AK-<i) + ̂ (^-i  -<2)  (2.11) 

where n, is the actual rate of inflation at time t. And the inflation expectations could be 

approximated by a purely autoregressive model when inflation was mild. They also found 

that devaluation had a dramatic impact on expected inflation rate, and variables such as 

wage-price guidelines, indirect tax changes, and political factors had no significant effect on 

inflation expectations. 

Smith (1982) extended the Carlson-Parkin (C-P) time series of consumers' inflation 

expectations over the period 1974-1977. He revised the series by using a different scaling 

factor and a different procedure to handle the "don't know" responses. The newly tabulated 

inflation expectations moved together with C-P inflation expectations, but had smaller values 

and less variation in general. Smith (1982) also classified the hypotheses of expectation 

formation into two basic groups: error-learning and extrapolative models. 

First-order error-learning or adaptive expectations postulates that expectations are 

revised by a constant proportion of the most recent errors: 

Frenkel (1975) outlined an error-learning inflation expectation formation model based on the 

distinction between long-term and short-term expectations. Long-term expectations were 

related to actual inflations by a first-order error-learning process: 

where n l
t
e  is the long-term expectation formed at time t. The short-term expectations were 

revised by constant proportions of the most recent errors in short-term expectations and the 

difference between the long-term expectation and the actual rate of inflation: 

71* - 7tet_x = X (n t  -7Z e
t_x)  0 < X < 1 (2.12) 

(2.13) 
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n e
t  -n e

t_x  = -7i e
t_2)  +  ̂ (n'f  -n t)  (2.14) 

If the long-term expectations were expressed as an infinite distributed lag of past actual 

inflation rates before substituting for n't
e, then (2.13) and (2.14) implied: 

K ~nU = (^2 -JjKXt ~nt-\) + t-\ ^ 15) 

+ (1 - A, - Aj )(^e_, - 7rf_2 ) 

The second group of basic models, extrapolative expectations, hypothesized that 

expected inflation was given by the most recent actual rate of inflation adjusted by a constant 

proportion of the recent changes in the inflation rate: 

<  = 7 C t + 0 ( x l - 7 r , _ l )  (2.16) 

Smith (1982) encompassed both the error-learning model and the extrapolative model, 

and presented a general formulation for inflation expectations. The distributed lag of actual 

inflation and of previous expectations of inflation gave the expected inflation: 

+ Vj <,+v2<2+- + vX.w  

(2.17) 

With m = n+1 = 2, p., = 1-vi — X-i and [12 = -V2 = X3, we get second-order error-learning. If m 

= n+1 = 1, and m = 1-vi = Xi, then the adaptive expectation model is obtained. If all the v, 

are zero, we get the general extrapolative model. If all the juii are zeros, expectation formation 

is an autoregressive process. 

Batchelor and Orr (1988) used a richer set of surveys (the Gallup 1961, 1974, and 1981 

surveys, and the EEC 1984 survey) to update the C-P inflation expectation series. This 

revision changed the estimated profile of consumer inflation expectations over time such that 

the new series was less volatile and more accurate than the original C-P series. 
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2.2.2. Livingston surveys 

The Livingston survey was started in 1946 by the columnist Joseph Livingston. The 

Philadelphia Federal Reserve Bank took over the survey in 1990. The survey is a semi­

annual survey that summarizes the forecasts of economists in business, industry, banking, 

academics, and government. It includes a variety of economic variables, of which only the 

price expectations has been studied extensively. 

Tumovsky (1970) analyzed the Livingston Survey's inflation forecasts from 1954 to 

1969. He performed bias tests on the survey data and found large inflation forecast errors in 

the late 1950s, especially strong under-predicted forecast during 1956-1958. The reported 

predictions were substantially more accurate for the I960's than for the earlier period. One 

of the reasons he offered for this finding was that people did not have much incentive to 

forecast inflation during the 1950s because inflation was low on average. The increased 

inflation during the 1960's induced more thorough forecasting. He also tested a number of 

models explaining the formation of price expectations. The evidence showed that the 

extrapolative expectation hypothesis was the most satisfactory one from the point of view of 

goodness of fit. 

In a 1975 article, Pesando evaluated the Livingston forecasts and found the one-period 

forecast to be downward-biased, which imparted a corresponding bias to forecasts of the 12-

month rate of inflation. He suggested that perhaps the survey was not representative of 

people's true forecasts. If the survey did represent true forecasts, then people were not 

rational according to his tests. Carlson (1977) argued that the published data were flawed 

because they might have been adjusted judgmentally by Livingston, so he presented a new 

series of expected inflation rates based on the averages of the original responses to the 
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Livingston surveys, which was used to reject Fama's hypothesis that the short-term interest 

rate was a good predictor of inflation rate. 

Figlewski and Wachtel (1981) analyzed the set of individual responses to the Livingston 

survey rather than the average forecasts across individuals used in the previous work. They 

found evidence of bias and inefficiency in the individual forecasts. Their evidence strongly 

indicated that a single-coefficient, time-invariant model cannot be viewed as an adequate 

representation of the complex inflation expectation process, and they found significant 

differences in expectations formation among individuals over time. 

The above discussion presents the literature on the formation of inflation expectation 

from data generated by two surveys: the Gallup Survey and the Livingston Survey. Other 

surveys available to the public include, for example, the Survey of Professional Forecasters, 

Blue Chip Economic Indicators, and the National Association of Business Economists' 

Outlook. We will not introduce them in this paper since they are not widely used in the 

literature. 

2.2.3. Time series model 

As stated earlier, some researchers have investigated the measurement of expected inflation 

using direct observations on inflation forecasts from surveys, but there exists suspicion that 

the survey data violate the rationality criterion, namely, the rational expectations are optimal 

forecasts conditional on available information. One way to obtain rational expectations of 

inflation is to formulate and estimate a time series model and confine the relevant 

information set to the past values of the inflation rate. The Autoregressive Integrated 
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Moving Average (ARIMA) model is frequently used for this purpose. The general formula 

for the ARIMA(p, d, q) model of the inflation rate 7tt is: 

V*, = » + £,[,AO7'*-, +Z'„e^.-y (2.18) 

where 

Vd = (1-B)d, is the backward difference operator of order d, d = 0, 1,2, ...; 

<|)i are the autoregressive (AR) process parameters, i = 1, 2, ..., p; 

0j are the moving average (MA) process parameters, j = 1, 2,..., q; 

Et represents independent and identically (0, (^-distributed error terms. 

Once the appropriate model is selected, the model is estimated and then used to construct the 

inflation expectations. For an ARMA(p, q) process of inflation rate series, the forecasted 

inflation expectations are generated using the following formula from Hamilton (1994): 

^t+s\t 

U+fa (7T,+$-i|, -w) + ̂ 2(^m-2|f -") + ••• +&p (àt+s-p\, ~u) 

+ 0sêt +es+xèt-x + ••• +0jt+s-q fors = 1, 2, • • •, q 

u+fa {â,+s-\\t ~U) + <l>2^,+s-2\t - «) + •" +0p(ât+s-p\i -") 

for s - q + 1, q + 2,-

(2 19) 

where 

s, =nt - *r,|M 

âr\, =nr for T <t 

This can be applied to the ARIMA(p, d, q) process by noting that Vd7it is an ARMA(p, q) 

process. 

Pearce (1979) restricted the relevant information set to the past values of the Consumer 

Price Index (CPI), then modeled the U.S. monthly CPI series for a base period (January 1947 

to April 1959) as ARIMA(0, 2,1) process using the time series techniques of Box and 
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Jenkins. The estimated model was used to forecast the CPI eight months and fourteen 

months ahead. Six more months of data were added, the model was re-estimated, and 

another pair of forecasts was computed. The procedure was repeated until the last forecast 

date he used. His results indicated that the time series model outperformed the Livingston 

survey data in terms of mean squared forecast error. 

Hafer and Hein (1985) fit a first-order moving average model to the change in the GNP 

deflator inflation series of the United States over the sample period 1953-1969. This 

ARIMA(0, 1, 1) process of 7tt was used to generate inflation expectations. They then 

compared three methods of inflation forecasting: a time series approach, an interest rate 

model, and the responses to the ASA-NBER survey of professional forecasters. The general 

conclusion was that the survey responses provided the most accurate ex ante forecasts of 

inflation, and the time series model forecasted worse than those derived from the interest rate 

model for 1970-1979 period but produced more accurate forecast for the 1980-1984 period. 

In a later study, Hafer and Hein (1990) applied univariate time series models to six countries 

(Belgium, Canada, England, France, Germany, and the United States) from 1967 to 1986, 

and concluded that the time series forecasts of inflation had equal or lower forecast errors 

and unbiased predictions more often than interest rate-based forecasts (which will be 

discussed below). 

More recent work by Eberts and Maurer (2002) investigated the Germany inflation rate 

series, which was constructed from the monthly seasonally adjusted price index for the living 

standard of all private households in West Germany over 1963 to 1994. They applied an 

ARIMA(1, 0,1) model, and their conclusion is similar to that of Hafer and Hein (1990), 
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which is the superiority of the univariate time series model over the interest rate model in the 

in-sample forecasting. 

2.2.4. Interest rate model 

Fisher (1930) pointed out that with perfect foresight and a well-functioning capital market, 

the one-period nominal rate of interest is the equilibrium real return plus the fully anticipated 

rate of inflation. This hypothesized relationship between the interest rate and the inflation 

rate has been tested extensively. The general findings are that there exist relationships 

between the current interest rate and past rates of inflation in a world of uncertainty where 

foresight is imperfect. As an alternative to estimating inflation expectations from survey 

data, some researchers, for example, Sargent (1969) and Feldstein and Eckstein (1970), have 

followed Fisher (1930) by assuming that a distributed lag of past price changes was an 

adequate, observable proxy for inflation expectations. 

The use of the Fisher equation to generate forecasts of inflation was suggested by Fama 

(1975). He specified the nominal interest rate as a linear function of the real interest rate and 

the inflation rate. More specifically, he assumed that the real interest rate was constant and 

estimated the following regression over 1953 to 1971: 

A, = a0 + axRt + st (2.20) 

where Rt is the nominal Treasury bill rate; A, represents the expected value of inflation 

defined as the change in CPI, and the tilda means the variables are random. He concluded 

that assumption of constant real interest rate provided good inflation forecasts for the sample 

period. Nelson and Schwert (1977) showed that inflation forecasts from a univariate time 

series model were about as reliable as those from Fama's Treasury bill rate model. 
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Subsequent works rejected the assumption of a constant real interest rate, instead finding that 

the expected real interest rate behaved as a random walk. For example, Hess and Bicksler 

(1975) provided evidence that expected real returns on Treasury bills wander through time; 

Fama and Gibbons (1982) found that when expected real returns were assumed to follow a 

random walk, the Treasury bill rates presented good inflation forecasts for the entire sample 

period 1953-1977. 

In 1984, Fama and Gibbons argued that if the real interest rate behaved as a random 

walk, then changes in the observed, ex-post real interest rates could be modeled as a simple 

moving average model and be written as: 

Rt-i - 7it = Et_i[r,_i] + st (2.21) 

where Rt-i represents the one-month Treasury bill rate observed at the end of month t-1,7it is 

the inflation rate (the change in the natural log of the U.S. CPI), Et.i[rt.i] is the expected real 

return for month t, and et is the unexpected component of the real return. Then the changes 

in the real return for t and t-1 could be modeled as: 

(Rt-i - Tit) - (R,-2 - Ttt-i)= AEt-i[rt-i] + Et - £t-i (2.22) 

where AEt_i[rt.i] is the change in the expected real return. If Et.i[rt.i] was a random walk, and 

both AEt.i[rt-i] and et were white noise, then the difference in real returns could be 

represented as an MA(1) process: 

(Rt-i - 7tt) - (Rt-2 - 7it-i) = ut + 0 ut-i (2.23) 

Therefore, the inflation expectations could be derived by subtracting the ex ante forecast of 

the real interest rate from the nominal interest rate observed at the end of period t-1 : 

(Rt-i - 7it) = (Rt-2 - Tin) + ut + 0 ut-i (2.24) 
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Using the above approach, Fama and Gibbons (1984) concluded that the interest rate model 

provided slightly better monthly forecasts of inflation than a univariate time series model. 

Eberts and Maurer (2002) noted the continuously significant positive autocorrelations in 

the observed German real interest rate series, and suggested it was natural to forecast real 

interest rates by an adequate ARIMA time series model. They applied an ARIMA( 1,0,1) 

process, which was selected by the SBC, to the monthly real interest rate over 1962 to 1994. 

They also compared the interest rate model with the time series model and concluded the 

superiority of the time series model in the in-sample forecasting, but none of the models gave 

attractive out-of-sample inflation expectation performance. 

Christiano (1989) put forth another interest model using quarterly yields on a three-

month Treasury bill rate Rt as the interest rate covering the period 1960 to 1989 with the 

following specification: 

At, = PoAR, + El, A A7r>-i + st (2-25) 

where ARt is defined as Rt-i-Rt-2. Christinao's model was a competing model with the P* 

model that was the same as the above formula (2.18) except ARt was replaced by natural log 

of the ratio Pt.i*/Pt.i. Both models were outperformed by a time series model. 

From the reviews presented above, inflation expectation is useful in theoretical and 

empirical settings. There are different approaches to obtain measures of inflation 

expectations, and the conclusions are inconsistent about which model better represents the 

inflation expectation process. To obtain alternative, hopefully more accurate, estimates of 

inflation expectation, we will employ a procedure in this paper that is proposed by Hamilton 

(1992), and later applied by Dotsey and DeVaro (1995), to construct the expected inflation 
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series by using a vector dynamic system and incorporating information from the commodity 

futures market. The details are presented later in Section 3 and 4. The constructed inflation 

expectation series is compared to the series obtained from the univariate time series model 

and the interest rate model, with the results reported in Section 5. 

3. Methodology 

Hamilton (1992) examined the implications of futures markets price data for measuring 

expectations about future aggregate prices. Using a vector dynamic system to model the 

relationship between aggregate prices and futures prices of different commodities, he showed 

that observations on contemporaneous futures prices quite often lead to a revision of the 

inference about ex ante expectations of aggregate prices. 

Hamilton argued that it is reasonable to treat the futures price of a commodity as the 

market's best guess as to the future spot price of that commodity. He modeled the 

relationship between commodity prices and aggregate prices and used the model to 

decompose aggregate price changes into anticipated and unanticipated components. He 

concluded that the public anticipated stable consumer prices during the first year of the Great 

Depression, meaning that the initial deflation was largely unanticipated. Later in the Great 

Depression, markets anticipated deflation, but not as severe as what actually occurred. 

Dotsey and DeVaro (1995) used the method Hamilton proposed to construct estimates of ex 

ante inflation expectations and used those data to study whether the disinflation of the early 

1980s was anticipated. 
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Hamilton is not the only one who examined the role of commodity prices in providing 

signals about the future direction of the economy, especially inflation. Cody and Mills 

(1991) argued that the information in commodity prices should be used in formulating 

monetary policy, since commodities are traded in continuous auction markets and these 

prices provide instantaneous information about the state of the economy. 

Let us start by looking at the theory underlying Hamilton's method of measuring 

expected inflation. 

3.1. Relation between aggregate price level and commodity prices 

We introduce the vector dynamic system representing the relationship between the aggregate 

prices and the commodity futures prices in Section 3.1.3, which links the simple forecasting 

regression model for aggregate price presented in Section 3.1.1, and the commodity price 

forecasting model shown in Section 3.1.2. 

3.1.1. The aggregate price level 

Let pt denote the log of an aggregate price index and let x, be a subset of the variables that are 

used to forecast pt. Then a simple forecasting regression model is: 

Pt+i = xt'ô + ut+i (2.26) 

i.e. 

Pt+i = E[pt+i|x,] + ut+i 

where ut+i is the regression error and is uncorrected with xt. 

The market's rational forecast, pe
t+i, can be written as: 
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p'+1 = xt'ô + a, (2.27) 

i.e. 

Pm = E[pt+i|It], Xtçlt 

where the rational expectation hypothesis says that at represents information people have in 

addition to xt that is useful for forecasting pt+i. It is assumed to be white noise, and to be 

uncorrelated with xt. Therefore, people use two types of information: the information xt that 

is known to everyone including the econometrician, and the information at that is unknown 

to the econometrician but can be inferred from the commodity futures market. And these two 

types of information are orthogonal to each other. 

Let at+i be the market's forecasting error, which is from pt+i = xt'8 + at + at+i, and is 

assumed to be white noise and uncorrelated with at and xt: 

at+i = Pt+i - pe
t+1 (2.28) 

Combining the above information, and assuming the regression error ut+i is white noise, we 

obtain the following expression: 

ut+i = at + at+i (2.29) 

with 

Var(ut+i) = E[ u2
+i ] = a2

a + a] (2.30) 

where <ra
2 is the variance of people's true forecast error, and o2

a is the variance of the 

omitted information term at. 

3.1.2. The commodity futures market 
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Let Sj,t denote the spot price of commodity j purchased at date t, and let Fj;t denote the price 

of a one-period ahead forward contract. At date t, the contract is signed but no money 

changes hands, and at date t+1, the commodity is delivered at the contract price Fj,t. 

If risk-neutral speculators have access to this market, then the contract price Fj,t equals 

the expectation formed by market participants at date t as to the value the spot price will take 

on at date t+1: 

Fj,t = Et[Sj,t+i] (2.31) 

Following Hamilton (1992), we assume that the distribution of the log of the spot price 

Sj,t+i conditional on information available at date t is normally distributed: 

Sj,,+i h log(Sj,,+i) ~ N(uj,t, a j. ) (2.32) 

then Sj)t+i has a lognormal distribution with the density: 

/($,. ; Uj, a ) ) = jl= exp[--l- (log(S, )-»,)=] /(w (S, ) (2.33) 
SjpTrcr] 2 a j 

and 

Et[Sj,t+i] = exp(uj,t + o) 12) (2.34) 

Substituting (2.34) into (2.31) and taking logs, 

l°g Fj.t = Uj,t + cr2j /2 

or rewrite as 

fj,t = Et[sj,t+1] - kj (2.35) 

where kj = - cr j 12, which is an unrestricted constant that can also incorporate a constant risk 

premium. 
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The efficient market hypothesis claims that the market's error in forecasting the j-th 

commodity price Wj;t+i can be observed directly from Sj,t+i - fj,t, we can write as: 

Sj,t+i -fj ,t = kj + Wj,t+, (2.36) 

Let q" at+i denote the projection of the commodity price forecast error Wj)t+i, on the aggregate 

price forecast error, at+i. Then 

Wj,t+i = q" at+i + ej;t+i (2.37) 

where the projection error eJ;t+i denotes unanticipated movements in the price of commodity j 

in period t, that is, uncorrelated with aggregate price movements during that period. 

The covariance between the observed aggregate regression error ut+i and the observed 

commodity forecasting error Wjjt+i must be due to the market's true error in forecasting 

aggregate prices at+i. This covariance is: 

Cov(w,+1, w j M  ) = E [ u M w j M  ]  

= E[(at + aM){qaj aM + ejl+l )] (2.38) 

= 9% 

Next, let's consider the regression of the futures price fj>t on xt: 

fj, t  = Xt'Pj  + Vj,t (2.39) 

where Vjjt represents the information that market participants had beyond the information 

contained in xt. It is assumed that sufficient lags of variables are included in xt so that vj,t is 

white noise. Since Vjjt is known to the market at time t, any correlation between vj,t and the 

aggregate regression error ut+i must be due to at (the information people had at time t not 

contained in xt). Let the projection of Vjjt on at be: 

Vj,t = q" a, + Ej,t (2.40) 
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where Sj,t is the information people had at time t about the future course of commodity j, that 

is, uncorrected with aggregate price movements. The covariance between the observed 

aggregate regression error ut+i and the observed commodity regression error vj;t is: 

Cov(u t + i , V j  t) = E[ut+lvjt] 

=  E [ ( a t  +  a M ) ( q ]  a t  +  s j t ) ]  (2.41) 

= 9% 

3.1.3 Aggregate prices and n commodity prices 

Define the nxl vectors as the following: 

Vt = (Vl)t, , Vn,t)' 

Wt+1 = (Wi,t+1, ..., Wn>t+l)' 

Ej,t = (Sl.t, ..6n>t) 

= (®1 ,t» • • • y Gn,t) 

And define the nxn matrices £ = E[£tst'] and S = E[etet']. Then from the preceding 

discussions we obtain the vector dynamic system, which consists of 2n+l equations: 

PM = X , ' S  +  U T + I  
1  f j , ,  = x t " P  +  v j t  j  =  \ , - - , n  (2.42) 

s,v+i ~ f j j  = k j  + w j , m  J  =  ! , • • • , "  

and the variance-covariance matrix of the observed error terms from these equations: 
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& = E v, K+1 vi w's+i] 

+crj) (Tjw'y 

<ry kywy+q 0 if t = s 

(2.43) 

0 

0 if t * s 

This vector dynamic system represents the relationship between the aggregate prices and the 

prices for j = 1, , n different commodities. 

The above dynamic system proposed by Hamilton (1992), as shown in (2.42) and (2.43), 

has two classes of restrictions: 

(A). The only allowable explanatory variable in equation Sj,t+i - fj,t = kj + Wj(t+i in (2.42) is a 

constant term kj. 

(B). The nxn block of (2.43) corresponding to the covariance between wt+i and vt' is forced 

to be zero. 

The two restrictions reflect the risk neutral efficient market assumption that information 

available at time t (xt or vt) should be uncorrected with the market's error in forecasting 

commodity prices (wt+i). It is possible to form an inference about the market's expectations 

of aggregate prices without assuming risk-neutrality, in which case restrictions A and B can 

be relaxed to estimate the system. 

Dotsey and DeVaro (1995) allowed for time-varying risk premiums in the case when 

wt+i is correlated with time t information and is not normally distributed white noise. In that 

case, equation (2.36) is replaced by: 

Sj,t+1 -  fj ,t = Xt'K + Wj,tH j  = 1,  . . .  ,n (2.36') 
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After the modification, Wj,t+i in (2.36') is normally distributed white noise. They also 

modified (2.42) in the vector dynamic system, replacing pt+i by Apt+[. So they estimate the 

following system of equations: 

Af,+, =xt'S + uHl 

•  fu=x; P + v j t  7 = 1,- ,» 

S j ,l+1 - fjj =x,'K + wjM j = l,--,n 

or, in matrix form: 

~ A P M  ~ S ' ~  "»(+i " 
f, = p xt + v, 

1 +
 1 :s
 

» 

K' 

plus the variance-covariance matrix of the observed error terms from above equations. 

To examine the market expectations about price or to have an optimal inference, as 

suggested by Hamilton (1992), use not only the information people have available at the time 

of their forecasts, but also the information that the econometrician is able to observe only 

after the fact. The statistically optimal inference about people's ex ante expectation of price 

is given by pe
l+x, which is the estimate of pe

M : 

PUi =x,S + [{q S'1 q + o-;2) / A][pM-x,ô] 

~ f u  - x ' t P l  si,<+i - f u  

+ [q S"1/A] 
fu 

fu 

- X ,P2 

~ X , P i  

- [ q S ~ 1 /  A] 
52,r+l 

5 3 , t + l  

- f ï , t  

"Ar 

i 
i 

J*
- 
^
 

(2.44) 

u ~ x t p i _  _S4,<+1 f4 , t  ~^4_ 

where A = q'S lq + cra
2 + g'E 1 q + <ra

2. So, the econometrician's best ex-post estimate of the 

market's ex-ante forecast of the aggregate price level can be expressed as the sum of four 

terms: the first term is the simple inference xt 8, the second term gives the weight to be 
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placed on ex post values of the aggregate price level itself, the third term represents the 

weight on the commodity futures data, and the last term gives the weight to be placed on the 

market's errors in forecasting commodity prices. 

Once we get the estimates for (2.42) and (2.43), we can analyze the weights of 

observations on ex post aggregate prices, ex post commodity forecast errors, and 

observations on contemporaneous futures prices on the optimal inference about people's ex 

ante expectations of price, then we can derive the ex ante expectations of inflation and 

continue with the analyses in which we are interested. 

3.2. Estimation Methods 

To identify the individual components of the variance-covariance matrix Q, we need an 

additional restriction. Following Hamilton (1992), we assume q" =q" - gr as restriction 

(C). Then the covariance between ut+i and wt+i is proportional to the covariance between 

ut+i and vt : 

E[ut+iWj,t+i]/E[ut+iVj,t] = a 2/<t2 for j = 1, ... ,n (2.45) 

This additional restriction allows us to use the ratio of the covariance of ut+i and wt+i to the 

covariance of ut+i and vt to estimate /a2
a . It also provides very useful information: a 

large covariance between ut+i and wj>t+i can be taken as evidence that much of the residual 

ut+i took people by surprise; a large covariance between ut+i and vj,t suggests that little of the 

residual ut+i took people by surprise. As pointed out by Dotsey and DeVaro (1995), 

restriction (2.45) is valid if anticipated and unanticipated movements affect st+i and pt+i 

proportionately even though the absolute effects of an anticipated movement need not be the 
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same as those of an unanticipated movement. For example, when the relevant aggregate 

information that agents possess is a demand shock that affects both the commodity prices and 

the aggregate prices in similar ways, then q" should equal to q". This restriction, however, 

need not be valid, and can be tested with such restriction placed on one commodity when 

multiple commodities are used. 

To estimate the dynamic system, we need to find a minimal set of explanatory variables 

Xt that assure ut+i and vj)t are white noise. Hamilton (1992) chose xt to include a constant, 

two seasonal dummies since all the variables have strong seasonal variations, two lags of 

prices, and spot commodity prices for corn, oats, and rye. So 

Xt — (1, du, d2t, Pt, Pt-l, Scorn,t, Soats.b Srye.t) (2.46) 

Dotsey and DeVaro (1995) used almost the same variables, except they used soybeans 

commodity prices rather than rye prices due to data availability, and they used two lags of the 

inflation rate rather than two lags of the price level. So, in their system 

Xt — (1, du, tht, Apt, APt_\ , Scorn,ti Soats,t, Ss0ybeans,t) (2.47) 

The data on commodity prices are from annual reports of the Chicago Board of Trade. The 

logarithm of CPI is used as the aggregate price index pt. 

Then the system of equations in (2.42) and (2.43) is estimated by full-information 

maximum likelihood (FIML) subject to qa = qa = q. And the log likelihood function is 

I = constant - ̂  log | Q | -^ {y ,  -  Bx t  ) 'Q"1 (y, - Bx,) (2.48) 

where yt is the vector of dependent variables, xt is the vector of independent variables, B 

represents the vector of coefficients in (2.42), and Q is the variance-covariance matrix 

defined in (2.43). 
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4. Empirical Results 

4.1. Data 

We use four commodities: corn, oats, soybean, and wheat, which are the only commodities 

that have observations available over our entire sample period from 1975 to 2001. The 

commodity prices are from the Chicago Board of Trade. The data are tri-annual data since 

the futures contract is four months in duration. We use I, II and III to represent the three 

observations each year. For example, 1980:1 refers to the first observation in 1980, and 

2000:111 refers to the last observation in 2000 . The price of a futures contract that is about to 

expire is used as the spot price of that commodity, and the price of a four-month ahead future 

contracts at the same date is used as the futures price of that commodity. The aggregate price 

used is the monthly consumer price index (CPI) from International Financial Statistics. The 

observations for January, May, and September are picked to match the tri-annual frequency 

of commodity prices. The natural logarithm transformation is applied to all data. The graphs 

for these price series are shown in Figure 2.1. The inflation rate implied by the CPI is also 

graphed in Figure 2.1. 

4.2. Estimation 

Before we start estimating the system of equations, we perform Augmented Dickey-Fuller 

(ADF) tests on aggregate prices, commodity spot prices, and commodity futures prices over 

the period 1975:1 to 2001 :II.2 The ADF test results are presented in Table 2.1. We can reject 

the null hypotheses of a unit root for all the series at the 5 percent significance level for the 

commodity spot price and commodity futures price of corn, oats, soybeans, and wheat. So 
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these series are assumed to be stationary. For the aggregate price in levels, we fail to reject 

the unit root hypothesis, which is not surprising since the aggregate price is growing over the 

sample period. However, we are able to find that the aggregate price in differences, i.e., the 

inflation rate series, is stationary. We will use both the aggregate price in levels (Hamilton, 

1992)3 and the aggregate price in differences in our analyses, which are presented in Sections 

4.2.1 and 4.2.2, respectively. 

One of the hypotheses assumed in the model is the efficiency of the commodity markets, 

so the information available at time t should be uncorrelated with the market's error in 

forecasting commodity prices for time t+j. This is reflected in equation (2.36): s,-t+i-fj,t = 

kj+Wj-t+i, which states that the error term Wj)t+i is normally distributed white noise. We 

present the Ljung-Box (^-statistics in the first part of Table 2.2. The test results confirm that 

the white noise assumption is reasonable over our sample period. The skewness and kurtosis 

of each series suggest we cannot reject the assumption of normality. So equation (2.36) 

provides an adequate description of commodity market behavior. 

4.2.1. Estimation using the aggregate price levels 

As mentioned earlier, to estimate the dynamic system, we need to find a minimal set of 

explanatory variables xt that assure ut+i and vJ)t are white noise. There is evidence in Table 

2.3 that seasonal variations are correctly anticipated by the futures markets4, so two seasonal 

dummies are included in the explanatory variables xt. Therefore, we choose xt to include a 

constant, two seasonal dummies, two lags of prices, and the spot commodity prices for corn, 

oats, soybean and wheat: 

xt = (1, du, d2t, pt, Pt-i, sc,t, s0,t, sS;t, sw,t) (2.49) 



www.manaraa.com

Next, we examine whether ut+i and Vj>t are uncorrelated error series using the 

independent variables shown above. The results are presented in the second half of Table 

2.2. For the estimated commodity regression error series {vjjt}, we cannot reject the null 

hypotheses of no autocorrelation for com, oats, and soybeans at the 5 percent significance 

level, but we show autocorrelation for wheat. For the estimated aggregate regression forecast 

error series {ut+i}, we can say that it is white noise at the 3 percent significance level. The 

value of Ljung-Box (^-statistics in Table 2.4 shows that if we exclude wheat from xt in 

(2.49), then the error series {wj,t+i} and {vj,t} are white noise at the 5 percent level, while 

{ut+i} is white noise at the 2 percent level. Therefore, we exclude wheat in our further 

analysis, and the explanatory variables in x, are: 

xt' = (1, du, d2t, pt, pt-i, sC)t, s0)t, ss>t) (2.49)' 

So the system using aggregate price in levels is a seven-equation-system depicted by (2.42), 

and the variance-covariance matrix G of the observed error terms is shown in (2.43): f and s 

are 3x1 vectors containing the commodity futures prices and spot prices of corn, oats, and 

soybeans, respectively; the coefficient vector 8 is a 8x1 vector, (3 is an 8x3 matrix, and K is a 

3x1 vector. The system is estimated with FIML, and the OPTIMUM procedure in the 

software GAUSS is used to conduct the analysis. 

The Sims' (1980) adjusted likelihood-ratio test is used often to examine different 

specifications of nested models, such as the model with restrictions A, B and C against the 

specification that the model only has restrictions A and B. The test statistic is defined as 

T - k  
2(———)(likelihood [unrestricted] - likelihood [restricted]), which asymptotically has a 

Chi-square distribution with degrees of freedom equal to the difference between the number 
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of parameters in the unrestricted model and the number of parameters in the restricted model. 

We use Sims adjusted likelihood-ratio test on our system with different restrictions imposed. 

The p-value for the test statistic of a joint likelihood-ratio test of the restricted model with 

restrictions A, B and C against the unrestricted model is 0.09. The p-value for the test of the 

model with restrictions A, B and C against the model with restrictions A and B is 0.85. And 

the p-value for the test of the model with restrictions A, B and C versus the model with 

restriction C only is 0.07. Taken together, these test results imply that we cannot reject the 

joint restrictions A, B and C at the 5 percent level. Therefore, the final system we estimate is 

the model using the aggregate price level, prices for the three commodities (corn, oats, and 

soybeans), and with restrictions A, B and C imposed. The estimation results using FIML are 

reported in Table 2.5. 

The variance of the price forecast is 0.43, about 0.13 is due to the variance of 

people's true forecast error a], and about 0.30 comes from the variance of the omitted 

information cr2
a. Note the system is estimated with restriction C in (2.45) imposed. 

Therefore large cr2
a implies the covariance between the aggregate regression error (ut+i) and 

futures price regression error (vj,t) is relatively large, or that little of the residual ut+i took 

people by surprise over our sample period. So we conclude that the market apparently 

anticipated the change in the inflation over time. 

From the FIML estimates in Table 2.5, the estimates of the predicted /?,+, are calculated 

using expression (2.44): 
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pe
t+x = 1.5563-0.7277 dXl - 0.3096d2t +1.4750/?, -0.4849 

- 0.0036 sc , - 0.0065 s04 + 0.0141 ss, 

+ 0.6504(p t+x  -x,'S) (2.50) 

-0.0063(^, -z//9J + 0.0045(/,, -%,'&) + 0.0219(/„ -^,'A) 

+ 0.0010(^+, -/„ -*J-0.0007(^, -^) 

-0.0013(^,-/„-t,) 

The forecasts of aggregate prices are also decomposed into individual contributions from the 

simple regression forecast xt 8, the ex post price term pt +i-xt 8, the future terms fjjt-xt 8, and 

the commodity market surprise term Sj)t+i-fj,t-kj. The actual value of the aggregate price and 

the contribution of each component to the inferred expectation of the aggregate price are 

displayed in Table 2.6. Observations on commodity futures prices are given relatively large 

weight in the optimal inference about people's ex ante expectations of aggregate price pe
M, 

leading to inference revisions up to 31 basis points; while ex post commodity forecast errors 

are given relatively small weight, rarely amounting to more than 3 basis points, with the 

largest revision to the inference being about 6 basis points. Table 2.7 reports the one-period 

ahead actual inflation and expected inflation at annualized rates at the indicated time. 

4.2.2. Application 

The U.S. economy slowed down in late 1999 and 2000 after the longest period of post war 

economic expansion, entering a recession in March, 2001 according to the National Bureau 

of Economic Research. To boost aggregate demand and avert a recession, the Fed reduced 

its target for the federal funds rate by 50 basis points, to 6 percent, in January, 2001, and 

started an aggressive rate reduction cycle with seven consecutive rate cuts, bringing the rate 

down to 1.75 percent at the end of 2001, the lowest level in 40 years. Figure 2.2 shows that 

the Treasury bill rate decreased dramatically starting late 2000 and continued dropping 
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through 2001, and the inflation rate was moderate and edging lower due to few indications of 

economic improvement in that year. 

The actual inflation rate and the expected inflation rate for the period 1999 through 2001 

are shown in Table 2.8. The expected rates of inflation are lower than the actual inflation 

rates in every four-month-ahead forecast, in seven out of eight cases over the eight-month 

forecast horizon and in two out of eight cases over the one-year forecast horizon. On 

average, the public expected 0.296 percent, 0.979 percent and 1.686 percent more deflation 

in the one-period ahead, two-period ahead, and three-period ahead forecasts, respectively. It 

is reasonable that starting from 1999, the public would have expected that the inflation rates 

would be lower four months later but still thought that the rates would go up in eight months 

or one year. But, as the economy slowed down, the Fed carried out its easing economy 

monetary policies, the public revised their expectation about the inflation rate, and believed 

that the inflation rates would be edging lower, so the public correctly anticipated the policy 

change. Thus the Fed's policy is credible over the recent economic downturn period. 

4.2.3. Estimation using inflation rate 

We also employ the inflation rate for the analysis of the system of (2.42) and (2.43) with pt 

replaced by Apt, since the price level may be nonstationary. We start with the inclusion of a 

constant, two seasonal dummies, two lags of inflation, and the commodity spot prices for 

corn, oats, soybeans, and wheat in the vector of explanatory variables xt. 

The hypothesis of efficiency of the commodity market, i.e., that wj,t+i is normally 

distributed white noise, still holds since Wj,t+i is exactly the same as in the previous case of 

using price levels. Next, we examine whether ut+i and vJ;t are white noise series. The results 
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are presented in Table 2.9. The estimated aggregate regression forecast error series {ut+i} is 

white noise. For the estimated commodity regression errors {vJ>t}, we fail to reject the null 

hypotheses of no autocorrelation for corn and oats at the 1 percent significance level, but we 

fail to show no autocorrelation for soybeans and wheat. In further analysis, we exclude 

wheat but keep soybeans, as we did in section 4.2.1 in the seven-equation system. 

The Sims' (1980) adjusted likelihood-ratio test is applied to examine different 

specifications of the model. The p-value for the test statistic of a joint likelihood-ratio test of 

the restricted model with restrictions A, B, and C against the unrestricted model is 0.15. The 

p-value for the test of the model with restrictions A, B, and C against the model with 

restrictions A and B is 0.36. And the p-value for the test of the model with restrictions A, B 

and C versus the model with restriction C only is 0.12. All test results imply that we cannot 

reject the joint restrictions A, B, and C at the 5 percent level. Therefore, the final system we 

estimate is the model using the inflation rate and three commodities (corn, oats, and 

soybeans) with restrictions A, B, and C imposed. The estimation results are reported in 

Table 2.10. 

The variance of the inflation rate forecast a2
u is 0.39, most of which is due to the 

variance of the public's forecast error a2 = 0.27. The rest comes from the variance of the 

omitted information <j2
a. The relatively large covariance between the aggregate regression 

error (ut+i) and the market's error in forecasting commodity j (vj,t) implies that most of the 

residual ut+i took people by surprise. This conclusion is different from what we found when 

we used the aggregate price level in the estimation. Then we concluded that little of the 

residual took people by surprise. 
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From the estimates of the FIML regression in Table 2.10, the estimates of the predicted 

A,pe
M are calculated, and the forecasts of the inflation rate can be decomposed into individual 

contributions from the simple regression forecast xt 8, the ex post inflation term pt+i-xt ô, the 

future terms fj,t-xt 8, and the commodity market surprise term Sj,t+i-fj,t-kj. Observations on ex 

post commodity forecast errors are given small weight, rarely amounting to more than 5 basis 

points, with the largest revision to the inference being about 10 basis points. The ex post 

inflation and commodity futures prices are given relatively large weight in the optimal 

inference about people's ex ante expectations of inflation, leading to revisions up to 53 and 

45 basis points, respectively. 

5. The Comparisons 

The constructed inflation expectation series in the previous section using Hamilton's 

procedure incorporates the information available in the futures commodity markets to 

provide the econometrician's best inference about the people's true expectation of inflation, 

which may also provide a good forecast of inflation. In this section, we are interested to see 

whether this procedure forecasts inflation better than those derived from a univariate time 

series model and an interest rate model. To assess the accuracy of the constructed inflation 

expectation series as the forecast of inflation, we compare the Root Mean Squared Error 

(RMSE) statistics against the RMSE derived from the inflation forecasts generated from the 

time series model and the interest rate model. The RMSE is the square root of the average 

squared forecast error: 
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RMSE = J ^'(Y' ^ (2.51) 

where Y, is the observed value, Yt is the estimated value, and n represents the number of 

observations in the sample. The closer the RMSE is to zero, the better are the estimates. 

5.1. In-Sample Comparison 

5.1.1. Univariate time series model 

For comparison purposes, we still use the same CPI from the International Financial 

Statistics as we used in the previous section 4. To be consistent with the tri-annual data used 

by Hamilton, the inflation rate 7tt is measured in the natural log difference of the CPI defined 

as ln(CPIt/CPIt.i), t = I, II, III and corresponding to the value of CPI for the months of 

January, May and September, respectively. The data include 80 observations over the period 

of 1975:1 to 2001:11, and are used to find the appropriate orders of an ARIMA model. After 

the suitable model is fitted, the inflation forecasts are calculated using the estimates. 

To find the suitable time series model, the stationarity of the inflation rate series is 

examined first. The ADF test in Table 2.1 shows that the t-statistic is -4.03, compared with 

the critical value -2.89 at the 5 percent significance level, we reject the null hypothesis of a 

unit root in the inflation series, and conclude that the inflation series over our sample period 

is stationary, so the inflation rate will be modeled as an ARMA process. 

The Box-Jenkins methodology is applied to select an appropriate time series model. The 

sample autocorrelation function (ACF) coefficients for the inflation rate (7tt) are shown in 
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Table 2.11, and the graphs of the ACF and partial autocorrelation function (PACF) are 

provided in Figure 2.3. As we can see, the ACF decays relatively slowly and the PACF 

shows relatively large spikes at lags 1, 2, and 3, suggesting a possible AR(3) model. The 

Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion (SBC) are calculated 

and used to select the order of the ARMA(p, q) model under different specifications of p < 3 

and q < 3. Both the AIC and SBC choose the model with p = 3 and q = 0. The AIC and SBC 

values are reported in Table 2.12. 

So the ARMA(3, 0) process is fit to the inflation series. The estimated model with 

standard error of the estimated coefficients in parentheses is: 

7i, = 1.34 + 0.25 n t_x  + 0.33 n t_2  + 0.272, 

(0.563) (0.113) (0.110) (0.112) 

The diagnostic checking of the residuals from the above regression using Ljung-Box Q-

Statistics confirms that the residuals are white noise. Thus the estimated model is used to 

construct the inflation expectation for one-period ahead using the formula in (2.19) and use 

which as a forecast of inflation. The RMSE value is 0.5307 over the sample period for the 

time series model, which is much larger than 0.2177 - the RMSE from our model when using 

the price level, and it is also larger than 0.4415 - the RMSE when using the inflation rate in 

our model. Therefore, when the econometricians are able to use information they are able to 

observe only after the fact, the statistically optimal inference about people's ex ante 

expectation of inflation is believed to be closer to the market expectation of inflation, which 

if used as a forecast of inflation is better than that using the inflation expectation derived 

from the univariate time series model as a forecast of inflation. 
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5.1.2. Interest rate model 

The univariate time series models explain the inflation expectation according to the available 

past information, while another simple system constructing the inflation rate expectation is 

based on the classic Fisher hypothesis which concerns the connection between the nominal 

interest rate, real interest rate, and inflation rate. The expected rate of inflation is described 

as the difference between the nominal interest rate and the expected real interest rate. 

Fama (1975) generated the inflation expectation treating the real interest rate as constant. 

Subsequent studies rejected the assumption of a constant real interest rate, and found that the 

expected real interest rate behaved as a random walk. To see which interest rate model is 

more suitable for our sample period 1975-2001, the autocorrelations of the inflation rate nt 

(defined again as the natural log difference of the CPI), and the real interest rate rt = Rt.i-7tt 

(where Rt is the nominal Treasury bill rate obtained from the International Financial Statistics 

and adjusted to a monthly rate by dividing the annual rate by 12) are presented in Table 2.11. 

The level of the real interest rate shows positive autocorrelations, starting with 0.60 at 

lag 1 and then decaying slowly. At lag 6, the ACF is still about 0.38. The stationarity of the 

real interest rate series is examined by the ADF test. The test statistic is -4.42. Since the 

critical value is -2.89 at the 5 percent level, we reject the unit root hypothesis and conclude 

that the real interest rate series rt is stationary over our sample period. Both the AIC and 

SBC select an ARMA(3, 0) process. The values of AIC and SBC are presented in Table 

2.13. The estimate of the interest rate model is: 

f, = - 0.82 + 0.22 f,_, + 0.33 f,_, + 0.27 f,_, 

(0.454) (0.112) (0.108) (0.112) 

The estimate for the inflation expectation can be derived as: 
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£(+„, = *r+I_, ~ït+At (2.54) 

where Rt+s-i is the nominal Treasury bill rate, r t+s l, is the estimated real interest rate 

constructed using the formula in (2.19). For one-period ahead forecast (i.e., s = 1), the 

estimate is ;r(+1|( = Rt - r<+1|,. Using the estimated inflation expectation as the forecast of 

inflation, the in-sample RMSE for s = 1 is 0.5390, which is larger than the RMSE for the 

univariate time series 0.5307, larger than the RMSE 0.2177 of our model using price level 

and the RMSE 0.4415 when the inflation rate is used. So among the three models we used to 

derive the inflation expectation over 1975-2001, the interest rate model performs worst in 

forecasting inflation, while our model employing Hamilton's procedure performs best (no 

matter whether we use aggregate price in levels or in differences), and the univariate time 

series model performs slightly better than the interest rate model in forecasting inflation. 

5.2. 'Out-of-Sample' Comparison 

The method we presented using the information at the time of the forecasts, the information 

on the ex post price (or inflation rate) and the commodity futures data to infer the expectation 

of inflation using (2.44) does not exactly provide out-of-sample forecasts of inflation since 

the model uses the information at time t+1 to predict the inflation rate at that time. But the 

purpose of this comparison is to examine whether the time series model, the interest model or 

the model we applied will provide more accurate inflation forecast if we only use the data up 

to a certain point. 

For the out-of-sample inflation expectation calculation, we use the observations over 

1975:1 to 1998:1, re-fit the corresponding model we selected previously for the univariate 
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time series and interest rate models, then predict the one-period ahead inflation expectation. 

We use it as the forecast of inflation and compare it to the corresponding actual inflation rate 

and calculate the mean squared error; then one more observation is added, the appropriate 

model is fitted, another forecast of inflation and mean squared error are computed, and so on. 

In the end, we get ten out-of-sample forecasts of inflation, and the RMSE is calculated. For 

the univariate time series model, the RMSE is 0.3781, while the RMSE for the interest rate 

model is 0.3751. So for these two models, the interest rate model works slightly better than 

the univariate time series model to predict inflation, which is different from the conclusion in 

the in-sample comparison where the univariate time series model performs better. 

The use of the commodity prices data to infer the inflation expectations and gives the 

RMSE value 0.1856 if we use it as the forecast of inflation employing the price level in the 

system of equations and following the same roll-over method as in the time series model and 

interest rate model. The RMSE is 0.2418 if use the inflation rate in out-of-sample prediction 

of inflation. We reach the same conclusion as before, which is that our model using the 

Hamilton's procedure provides the best estimates of inflation among three different models.5 

6. Conclusion 

In this paper, we constructed a time series of inflation expectations over the period 1975 to 

2001 adopting the procedure developed by Hamilton (1992). This procedure takes into 

account of the information available in the future commodity markets to provide the 

econometrician's best inference about the people's true expectation of inflation. Then the 

expected inflation series is compared to the expected inflation rates derived from a simple 
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time series model and an interest rate model as the forecast of inflation. The interest rate 

model gives the worst performance in in-sample forecasts while the univariate time series 

performs worst in out-of-sample forecasts. The Hamilton (1992) procedure performs best in 

both in-sample and out-of-sample comparisons over the period under investigation. We 

believe that the future commodity prices reflect the combined information and wisdom of 

millions of markets participants and provide instantaneous information about the state of 

economy, therefore giving signals about the future conditions of economy. The inflation 

expectation series we got are helpful to guide the central bank to infer the movements of 

future level of inflation. 

Since the inflation expectation series constructed makes use not only the information 

available to people at the time of their forecasts, but also the information the econometricians 

observe after the fact, it gives the optimal inference of people's true expected rate of 

inflation. Such alternative, direct measure of inflation expectation series can be applied to 

examine different economic theories that related with expected inflation, and future works on 

tests of such theories may assist us to get better understanding of the economy and help the 

policy maker. 

The expected inflation rate series constructed can be decomposed into anticipated and 

unanticipated components providing us the opportunity to examine whether the monetary 

policy change is credible. Our study represents the first attempt to analyze whether the 

continuous reduction of federal funds rate carried out by the Fed in early 2000s was expected 

when the economy went into recession. Our results indicate that the deflations are mostly 

anticipated by the public in the most recent economic downturn, so the Fed's monetary 

policies are expected by the people and hence are credible. 
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Notes 

1. Different measures of inflation expectations are applied in these papers: the actual rate of change 
in the consumer price index are used by Fama (1975), Atkins (1989), Bonham (1991), Wallace 
and Warner (1993), and Inder and Silvapulle (1993); Carlson (1977) calculated the expected rate 
of inflation using the Livingston survey data of the forecasted CPI; Hess and Bicksler (1975) 
constructed a time series predictor of inflation based on past rates of U.S. inflation. Details on 
the formation of inflation expectation by previous works are presented in Section 2.2. 

2. Stationarity is usually assumed for the time series applied in the regression. The ADF test is 
applied by considering regression Ay t=a0+yy t_,+a2t+Zi Pi Ay t.i+,+et, where i=2,..,p. The lag length 
p in Ayt-i+i is selected such that each coefficient (3j is significantly different from zero and {et} is 
white noise, e.g. p=4 for {pt}. 

3. Hamilton (1992) used the aggregate price levels without checking the series' stationarity. 

4. The F-tests reject that the seasonal dummies have zero coefficients for both the expected and 
actual commodity inflations for corn and soybean at the 10 percent significance level. For oats, 
the coefficients for May and September are both insignificant. For wheat, expected commodity 
inflation shows significant seasonal effect at September, but not the actual commodity inflation. 
In summary, the expected commodity inflations closely track the seasonal change in the actual 
commodity inflations. 

5. We also applied the MWSLS estimator introduced in the first chapter in the forecasting of 
inflation. We used the same sample over 1975:1-2001:11, and the inflation rate is defined the 
same as the log difference between two consecutive CPI which is tri-annual data. The inflation 
series is modeled without trend and with AR(3) errors. The in-sample RMSE from such model 
is 0.2407, which is larger than 0.2177 - the RMSE from our model when CPI is used, but 
smaller than 0.4415 - the RMSE from our model when inflation rate is used, 0.5307 - the RMSE 
from the time series model, and 0.5390 - RMSE from the interest rate model. For out-of-sample 
comparisons, we computed ten one-step-ahead forecasts, the RMSE from MWSLS estimator is 
0.2019. The same conclusion is reached as for in-sample comparisons, that is, our model using 
Hamilton's procedure performs best when CPI is used, the MWSLS estimator performs slightly 
worse than our model. The interest rate model and the time series model perform worst, both in 
the in-sample and out-of-sample comparisons. In addition, we used the simple regression 
forecasts in equation (2.50) to forecast inflation. The calculated in-sample RMSE is 0.6582 
indicating this method performed worst in all approaches, and the out-of-sample RMSE is 
0.3477 which performed slightly better than the time series and the interest rate models but still 
worse than our model and that of using MWSLS estimator. Therefore, the use of Hamilton's 
procedure by incorporating additional information from commodity market beyond that in the 
simple forecasts improves the model's performance in forecasting inflation. In summary, we 
conclude that the model we applied using Hamilton's procedure produces best inflation forecast. 
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Table 2.1. Unit root tests for aggregate price, the commodity spot and future prices 

Augmented Dickey-Fuller Test Statistics 
Aggregate Price Index Pt -2.617 

Apt -4.027 
Commodity Spot Price Scorn -3.554 

Scats -3.331 
^soybean -4.018 
Swheat -3.089 

Commodity Futures Price Fcom -3.440 
Foats -3.074 
F soybean -3.512 
Fwheat -2.924 

Note: The critical values are -3.51 at 1%, -2.89 at 5% and -2.58 at 10% significance level. 

Table 2.2. White noise tests of the estimated error series in four-commodity system 

Estimated Commodity Ljung-Box Q-Statistic (significance level) 

Error Series 0(3) 0(6) 0(9) 0(12) 

wj,t+i Corn 0.465 2.486 3.972 8.480 wj,t+i 
(0.93) (0.87) (0.91) (0.75) 

Oats 0.323 6.957 13.399 14.610 
(0.96) (0.32) (0.15) (0.26) 

Soybeans 4.678 9.793 12.228 13.729 
(0.20) (0.13) (0.20) (0.32) 

Wheat 5.453 10.238 13.913 16.344 
(0.14) (0.11) (0.13) (0.18) 

vj,t Corn 4.906 5.872 6.916 13.623 
(0.18) (0.44) (0.65) (0.33) 

Oats 5.468 7.521 9.430 12.684 
(0.14) (0.28) (0.40) (0.39) 

Soybeans 7.318 10.147 12.085 13.149 
(0.06) (0.12) (0.21) (0.36) 

Wheat 20.916 22.301 23.853 37.649 
(0.00) (0.001) (0.004) (0.00) 

uj,t+l 9.207 11.808 14.895 21.673 uj,t+l 
(0.03) (0.07) (0.09) (0.04) 
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Table 2.3. Seasonality regression of expected and actual commodity-price inflation 

Coefficient (standard error) Ff2.761 test (p value) 
Dependent Constant May September that seasonal dummies 
Variable Term Dummy dummy have zero coefficients 
Expected corn 6.377** -6.772** -4.900** 13.084** 
Inflation (0.96) (1.37) (1.37) (0.00) 
Actual corn 7.143** -15.745** -8.167** 7.745** 
Inflation (2.80) (4.00) (4.00) (0.00) 
Expected oats 4.369** -2.766 0.416 1.557 
Inflation (1.36) (1.95) (1.95) (0.22) 
Actual oats 0.678 -7.360 3.458 3.004* 
inflation (3.13) (4.47) (4.47) (0.06) 
Expected soybeans 3.150** -3.864** -1.488 5.810** 
inflation (0.80) (1.14) (1.14) (0.00) 
Actual soybeans 3.941 -8.938** -4.882 2.313* 
inflation (2.92) (4-16) (4.16) (0.10) 
Expected wheat 0.654 -0.080 3.433** 3.136** 
inflation (1.11) (1.59) (1.59) (0.05) 
Actual wheat -1.857 -0.900 4.493 1.126 
inflation (2.68) (3.82) (3.82) (0.33) 

Note: * indicates significant at 10% level, and ** indicates significant at 5% level. 

Table 2.4. White noise tests of the estimated error series in three-commodity system 

Estimated Error Commodity Ljung-Box Q-Statistic (significance level) 

Series 0(3) 0(6) 0(9) 0(12) 

wj,t+l Corn 0.465 2.486 3.972 8.480 
(0.93) (0.87) (0.91) (0.75) 

Oats 0.323 6.957 13.399 14.610 
(0.96) (0.32) (0.15) (0.26) 

Soybeans 4.678 9.793 12.228 13.729 
(0.20) (0.13) (0.20) (0.32) 

Vj>t Corn 7.664 8.676 10.007 17.755 
(0.05) (0.19) (0.35) (0.12) 

Oats 5.113 6.875 8.203 10.780 
(0.16) (0.33) (0.51) (0.55) 

Soybeans 7.329 10.046 12.097 13.233 
(0.06) (0.12) (0.21) (0.36) 

Uj_t+l 9.314 11.575 15.461 23.684 
(0.03) (0.07) (0.08) (0.02) 
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Table 2.5. FIML estimation results for the three-commodity system 

Likelihood values: 

Unrestricted likelihood: -1109.7536 

Restricted likelihood (restrictions A & B imposed): -1133.7023 

Restricted likelihood (only restrictions C imposed): -1110.3976 

Restricted likelihood (restrictions A, B & C imposed): -1133.8838 

FIML estimates with restrictions A, B & C imposed: 

<r„ =0.134 er„ = 0.298 q' = [0.872 2.400 2.231] 

£ = 
12.50 
2.79 
3.25 

2.79 3.25 
21.71 5.16 
5.16 7.89 

S = 
180.81 

112.34 
133.37 

112.34 133.37 
239.60 113.20 
113.20 185.56 

0.43 0.26 0.72 0.67 0.12 0.32 0.30 
0.26 12.73 3.42 3.83 0.00 0.00 0.00 
0.72 3.42 23.43 6.76 0.00 0.00 0.00 
0.67 3.83 6.76 9.37 0.00 0.00 0.00 
0.12 0.00 0.00 0.00 180.91 112.62 133.63 
0.32 0.00 0.00 0.00 112.62 240.37 113.92 

0.30 0.00 0.00 0.00 133.63 113.92 186.23 
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Table 2.6. Components of inferred expectations about aggregate prices 

Trimester Actual Value Expected Value Contribution to pe
M 

(0 (Pt+O ( !>f+1 ) Simple Forecast Ex-post Prices Futures Term Commodity Errors 
( x,'5 ) (Pt+i - xt'ô ) (si.i + i - fi,t- kj ) 

1975:1 355.249 355.642 356.404 -0.752 -0.032 0.021 

1975:2 357.907 357.608 357.459 0.291 -0.140 -0.002 

1975:3 359.786 359.838 360.031 -0.160 -0.049 0.015 

1976:1 361.281 361.403 362.031 -0.488 -0.128 -0.012 

1976:2 363.257 363.180 363.069 0.123 0.029 -0.041 

1976:3 364.832 365.030 365.262 -0.280 0.068 -0.020 

1977:1 367.807 367.654 367.463 0.224 0.025 -0.058 

1977:2 369.660 369.956 371.270 -1.047 -0.314 0.047 

1977:3 371.382 371.449 371.590 -0.136 0.005 -0.010 

1978:1 374.597 374.403 373.975 0.405 0.039 -0.015 

1978:2 377.643 377.536 377.787 -0.094 -0.154 -0.004 

1978:3 380.332 380.317 380.279 0.035 0.010 -0.006 

1979:1 384.823 384.463 383.503 0.859 0.095 0.006 

1979:2 389.060 388.932 388.483 0.375 0.060 0.014 

1979:3 393.359 392.905 392.069 0.839 -0.017 0.014 

1980:1 398.248 397.840 396.960 0.838 0.027 0.015 

1980:2 400.988 401.237 401.650 -0.431 0.040 -0.023 

1980:3 404.428 404.043 403.058 0.891 0.088 0.005 

1981:1 407.635 407.616 407.442 0.126 0.041 0.008 

1981:2 411.398 411.076 410.181 0.792 0.098 0.005 

1981:3 412.536 412.850 413.644 -0.721 -0.065 -0.008 

1982:1 414.155 414.154 414.173 -0.012 0.006 -0.013 

1982:2 416.294 416.167 415.713 0.378 0.061 0.015 

1982:3 416.216 416.757 417.698 -0.964 0.021 0.002 

1983:1 417.577 417.564 417.286 0.190 0.072 0.018 

1983:2 419.147 419.217 419.083 0.042 0.119 -0.027 

1983:3 420.275 420.531 420.676 -0.261 0.104 0.011 

1984:1 421.730 421.940 422.133 -0.262 0.057 0.012 

1984:2 423.266 421.940 423.418 -0.099 -0.017 0.016 

1984:3 423.772 423.920 424.274 -0.327 -0.028 0.000 

1985:1 425.405 425.241 424.929 0.310 -0.006 0.008 

1985:2 426.395 426.588 426.868 -0.308 0.004 0.024 

1985:3 427.597 427.441 427.213 0.250 -0.023 0.001 

1986:1 426.956 427.717 429.174 -1.443 -0.031 0.017 

1986:2 428.138 427.993 427.512 0.407 0.091 -0.017 

1986:3 429.019 429.042 429.080 -0.040 0.039 -0.038 

1987:1 430.676 430.468 430.320 0.232 -0.069 -0.015 

1987:2 432.347 432.191 432.103 0.159 -0.044 -0.027 

1987:3 432.981 433.084 433.311 -0.215 0.014 -0.026 

1988:1 434.523 434.458 434.254 0.176 0.029 0.000 
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Table 2.6. (Continued) 

Trimester Actual Value Expected Value Contribution to 

( t ) (Pi+i) ( i>t +1 ) Simple Forecast Ex-post Prices Futures Term Commodity Errors 
(x/8) (PT+i - x, S ) ( fi.. - x, 8 ) (Si.t+1 " fi.i -

1988:2 436.463 436.520 436.210 0.164 0.179 -0.034 

1988:3 437.538 437.741 437.779 -0.157 0.104 0.014 

1989:1 439.741 439.672 439.183 0.363 0.097 0.028 

1989:2 440.709 441.103 441.582 -0.568 0.049 0.040 

1989:3 442.604 442.228 441.460 0.744 0.017 0.006 

1990:1 444.018 444.181 444.433 -0.270 0.016 0.002 

1990:2 446.683 446.326 445.278 0.914 0.104 0.031 

1990:3 448.108 448.252 448.388 -0.182 0.026 0.020 

1991:1 448.852 449.214 449.829 -0.635 0.023 -0.003 

1991:2 450.025 450.096 449.866 0.104 0.119 0.007 

1991:3 450.679 450.747 450.793 -0.075 0.019 0.009 

1992:1 451.830 451.735 451.825 0.004 -0.081 -0.012 

1992:2 452.969 453.021 452.929 0.026 0.066 0.001 

1992:3 453.882 453.701 453.641 0.157 -0.080 -0.016 

1993:1 454.998 455.023 455.150 -0.099 -0.027 -0.001 

1993:2 455.619 455.790 456.079 -0.299 0.024 -0.014 

1993:3 456.372 456.391 456.238 0.087 0.048 0.017 

1994:1 457.265 457.452 457.799 -0.348 -0.008 0.008 

1994:2 458.538 458.494 458.475 0.041 -0.019 -0.003 

1994:3 459.138 459.153 459.344 -0.134 -0.062 0.006 

1995:1 460.397 460.378 460.290 0.070 0.018 0.001 

1995:2 461.056 461.262 461.440 -0.250 0.076 -0.004 

1995:3 461.828 461.617 461.302 0.342 0.001 -0.027 

1996:1 463.249 463.079 462.846 0.263 -0.040 0.011 

1996:2 464.015 463.956 464.175 -0.104 -0.123 0.008 

1996:3 464.833 464.659 464.512 0.209 -0.070 0.009 

1997:1 465.453 465.608 466.126 -0.437 -0.051 -0.030 

1997:2 466.146 466.089 466.543 -0.259 -0.204 0.009 

1997:3 466.391 466.262 466.507 -0.075 -0.166 -0.004 

1998:1 467.133 467.254 467.369 -0.153 0.027 0.011 

1998:2 467.619 467.813 468.125 -0.329 0.004 0.013 

1998:3 468.046 468.025 467.961 0.055 0.009 0.000 
1999:1 469.199 469.134 469.086 0.073 -0.034 0.009 

1999:2 470.212 470.118 470.002 0.136 -0.018 -0.003 

1999:3 470.682 470.616 470.610 0.047 -0.038 -0.003 

2000:1 472.295 471.985 471.549 0.486 -0.032 -0.018 

2000:2 473.620 473.562 473.384 0.154 0.020 0.005 

2000:3 474.406 474.401 474.278 0.083 0.025 0.014 

2001:1 475.875 475.706 475.454 0.274 -0.034 0.012 

2001:2 476.217 476.249 476.714 -0.323 -0.112 -0.029 
Note: The mean of the forecast errors for p,+) is -0.005, the standard deviation is 0.219. 
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Table 2.7. One period ahead actual and expected inflation for period ending at indicated date 

Date (t) HPt+i-P,)  3(#+,-P,) Date (t) 3 (P,+ i~P,) 3(#+,-A) 

1975:1 6.078 7.257 1988:2 5.819 5.990 

1975:2 7.972 7.076 1988:3 3.225 3.832 

1975:3 5.637 5.793 1989:1 6.608 6.401 

1976:1 4.484 4.852 1989:2 2.903 4.086 

1976:2 5.929 5.698 1989:3 5.686 4.557 

1976:3 4.724 5.320 1990:1 4.241 4.730 

1977:1 8.925 8.465 1990:2 7.994 6.925 

1977:2 5.559 6.447 1990:3 4.275 4.707 

1977:3 5.165 5.368 1991:1 2.233 3.319 

1978:1 9.644 9.064 1991:2 3.520 3.733 

1978:2 9.139 8.815 1991:3 1.961 2.166 

1978:3 8.068 8.023 1992:1 3.454 3.169 

1979:1 13.473 12.392 1992:2 3.418 3.574 

1979:2 12.710 12.327 1992:3 2.738 2.196 

1979:3 12.897 11.534 1993:1 3.346 3.422 

1980:1 14.667 13.442 1993:2 1.863 2.376 

1980:2 8.219 8.966 1993:3 2.260 2.315 

1980:3 10.320 9.164 1994:1 2.678 3.238 

1981:1 9.621 9.565 1994:2 3.818 3.686 

1981:2 11.290 10.322 1994:3 1.798 1.844 

1981:3 3.414 4.356 1995:1 3.777 3.721 

1982:1 4.856 4.853 1995:2 1.976 2.594 

1982:2 6.416 6.036 1995:3 2.317 1.684 

1982:3 -0.234 1.389 1996:1 4.264 3.753 

1983:1 4.083 4.045 1996:2 2.298 2.121 

1983:2 4.710 4.919 1996:3 2.452 1.932 

1983:3 3.384 4.151 1997:1 1.861 2.324 

1984:1 4.365 4.996 1997:2 2.078 1.909 

1984:2 4.607 4.763 1997:3 0.735 0.347 

1984:3 1.519 1.961 1998:1 2.227 2.589 

1985:1 4.899 4.406 1998:2 1.457 2.039 

1985:2 2.969 3.549 1998:3 1.282 1.219 

1985:3 3.606 3.139 1999:1 3.459 3.265 

1986:1 -1.924 0.359 1999:2 3.037 2.756 

1986:2 3.545 3.111 1999:3 1.411 1.211 

1986:3 2.642 2.711 2000:1 4.840 3.908 

1987:1 4.972 4.346 2000:2 3.974 3.802 

1987:2 5.013 4.545 2000:3 2.359 2.342 

1987:3 1.903 2.211 2001:1 4.407 3.899 

1988:1 4.627 4.430 2001:2 1.027 1.123 
Note: The mean of the forecast errors is 0.015, and the standard deviation is 0.657. 
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Table 2.8. One, two and three period ahead actual and expected inflation over the period 1999-2001 

Period One period ahead Two period ahead Three period ahead 
ending 3  ( P , ~ P , - 2 )  3 ( p ' - p , . 2 )  3  { p , ~ p , - i )  W

 

3%
 i >
 

1999:1 1.283 1.220 2.739 3.308 4.966 6.799 
1999:2 3.458 3.265 4.741 4.208 6.197 6.272 
1999:3 3.038 2.756 6.496 6.271 7.778 6.912 
2000:1 1.413 1.213 4.450 3.736 7.908 7.691 
2000:2 4.839 3.907 6.251 3.623 9.289 6.038 
2000:3 3.974 3.801 8.812 6.561 10.225 5.646 
2001:1 2.359 2.342 6.333 5.418 11.171 7.299 
2001:2 4.406 3.899 6.765 5.630 10.739 8.128 

Table 2.9. White noise test results of the estimated error series when using inflation rate series 

Estimated Commodity Ljung-Box Q-Statistic (significance level) 

Error Series 0(3) 0(6) 0(9) 0(12) 

Vj,t  
Corn 11.163 13.431 14.521 25.009 

(0.01) (0.04) (0.10) (0.01) 
Oats 5.166 7.354 8.765 12.353 

(0.16) (0.29) (0.46) (0-42) 
Soybeans 14.085 18.034 19.355 24.022 

(0.003) (0.01) (0.02) (0.02) 
Wheat 33.317 34.185 34.857 50.922 

(0.00) (0.00) (0.00) (0.00) 

1.940 3.012 4.543 12.768 
(0.59) (0.81) (0.87) (0.39) 
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Table 2.10. FIML estimation results for the three-commodity system using inflation rate 

Likelihood values: 

Unrestricted likelihood: -1114.4314 

Restricted likelihood (restrictions A & B imposed): -1136.5614 

Restricted likelihood (only restrictions C imposed): -1114.8911 

Restricted likelihood (restrictions A, B & C imposed): -1136.7599 

FIML estimates with restrictions A, B & C imposed: 

a =0.271 <7 =0.127 q' = [0.252 3.415 3.285 ] 

£ = 
13.25 4.01 4.51 
4.01 22.67 6.20 
4.51 6.20 9.02 

S  =  

181.04 111.80 132.75 
111.80 237.29 110.15 
132.75 110.15 181.84 

0.40 0.03 0.44 0.42 0.07 0.93 0.89 
0.03 13.26 4.12 4.62 0.00 0.00 0.00 
0.44 4.12 24.16 7.63 0.00 0.00 0.00 
0.42 4.62 7.63 10.40 0.00 0.00 0.00 
0.07 0.00 0.00 0.00 181.06 112.03 132.98 
0.93 0.00 0.00 0.00 112.03 240.45 113.19 
0.89 0.00 0.00 0.00 132.98 113.19 184.77 
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Table 2.11. The autocorrelation of tri-annual variables 7tt, Rt, and r, 

Variable Pi P2 P3 P4 Ps P6 Pi Ps P» Pio Pll Pi2 

Tti 0.66 0.68 0.66 0.53 0.49 0.43 0.34 0.24 0.24 0.21 0.10 0.17 

R, 0.90 0.80 0.71 0.62 0.51 0.44 0.39 0.30 0.24 0.19 0.13 0.06 

rt 0.60 0.64 0.61 0.48 0.45 0.38 0.27 0.18 0.21 0.17 0.05 0.14 

Table 2.12. The AIC and SBC for the ARMA(p, q) model of inflation series 

AR order MA order AIC SBC AR order MA order AIC SBC 

"0
 

II o
 

II o
 

350.99 353.35 P = 2 q = 0 292.84 299.91 

q = 1 330.05 334.76 q= 1 291.85 301.28 

q = 2 318.16 325.23 q = 2 292.14 303.92 

q = 3 305.93 315.36 II O" 292.17 306.31 

p = 1 q = 0 307.94 312.65 P = 3 q = 0 289.21* 298.64* 

q= 1 293.82 300.89 q= 1 290.58 302.36 

q = 2 290.14 299.57 q = 2 292.01 306.15 

q = 3 290.97 302.75 q = 3 292.30 308.80 

Note: * indicates the selected model. 

Table 2.13. The AIC and SBC for the ARMA(p, q) model of real interest rate series 

AR order MA order AIC SBC AR order MA order AIC SBC 

P = 0 q = 0 330.02 332.36 p = 2 q = 0 282.72 289.75 

q = l 313.29 317.98 q = 1 281.62 291.00 

q = 2 302.97 310.00 q = 2 282.18 293.90 

q = 3 293.11 302.49 q = 3 281.70 295.76 

P= 1 X) II o
 

296.54 301.23 p = 3 q = 0 278.73* 288.10* 

q = 1 283.63 290.67 q = 1 280.22 291.94 

q = 2 280.18 289.55 q = 2 281.86 295.92 

q = 3 280.58 292.30 q = 3 283.86 300.26 

Note: * indicates the selected model. 
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Figure 2.1. Aggregate price, commodity spot and futures price over 1975:1-2001:11 
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CHAPTER III. 

AN EMPIRICAL EXAMINATION OF THE FISHER EFFECT AND THE PHILLIPS 

CURVE 

1. Introduction 

Inflation expectations play an important role in some key economic theories, such as the 

Fisher effect hypothesis and the Phillips curve. Although these theories are convincing on 

the theoretical level, there is no general consensus from empirical studies. To confirm these 

theories with empirical data would provide us a better understanding of the current economy, 

and help us predict the future conditions of the economy, thereby assisting in policy 

decisions and adjustments. 

Since there is no direct observable data on inflation expectations, three approaches have 

been frequently used to measure economic agents' inflation expectations. The first approach, 

employed by Fisher (1930), is to derive a proxy for inflation expectations from long lags of 

past prices or inflation rates. The second approach, introduced by McCallum (1976), uses 

the actual future values of inflation as a proxy for inflation expectations. The third approach 

is to use expected rates of price change obtained through surveys, for instance, the Livingston 

survey or the Michigan survey, as a measure of inflation expectations. As pointed out by 

Roberts (1995, 1997), each of these three approaches has its advantages and disadvantages. 

The first approach is easy to implement, but is purely adaptive and only reflects information 

that is imbedded in the lagged inflations. The second approach does not need an explicit 

measure of inflation expectations, however, it introduces econometric complications due to 

an additional source of error1. The survey measure of expectations in the third approach 
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provides a better proxy than the first two approaches because it is not purely adaptive and 

reflects more information than the first approach and it avoids econometric complications in 

using actual future inflation rates. Despite these advantages of the survey measure of 

inflation expectations, it has the limitation that the respondents have little incentive to 

provide thoughtful answers, which could result in a poor proxy for actual inflation 

expectations. 

In our previous study, a time series of inflation expectations was obtained by applying 

Hamilton's (1992) procedure which incorporated information in the commodity futures 

market to forecast general prices. The constructed series of inflation expectations may 

provide a better measure of people's true expectations of price change than the purely 

adaptive proxy stated in the first approach and the realized future inflations used as the proxy 

in the second approach because the constructed series not only took into account the 

information imbedded in the past price experience, but also contained information reflecting 

instantaneous changes about the state of the economy since commodities were traded in 

continuous auction markets (Cody and Mills, 1991). It also avoids possible noise in survey 

respondents' answers for their expectations caused by using the proxy described in the third 

approach. 

The motivation of this paper is to use this alternative measure of inflation expectations to 

examine two broadly debated topics in the field of economics, the Fisher effect and the 

Phillips curve, in which inflation expectations play a key role. The Fisher effect describes 

the impact of inflation expectations on the nominal interest rate, while the Phillips curve 

states a negative relationship between inflation and unemployment where expectations are 

given. 
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This paper is divided into four sections. The next section starts with a survey of the 

literature reviews on the Fisher effect, and then presents the methodology and empirical test 

results. Section 3 introduces two main alternative specifications of the Phillips curve 

augmented with inflation expectations (the expectations-augmented Phillips curve, and the 

New Keynesian Phillips curve), reports the estimates on the single equation models, and 

compares the superiority of these two specifications. Section 4 concludes this paper. 

2. Fisher Effect 

Irving Fisher's (1930) hypothesis about the impact of inflation expectations on nominal 

interest rates is one of the most studied topics in economics. Fisher (1930) claimed that in an 

economy with perfect foresight and a well-functioning capital market, there is a one-to-one 

relationship between the nominal interest rate and the rate of inflation, while the real rate of 

interest is unrelated to inflation being determined entirely by real factors. However, with 

limited information in a world of uncertainty, the exact one-to-one relationship between the 

nominal interest rate and the rate of inflation does not hold. Hence, there are two versions of 

the Fisher hypothesis in the literature: the strong form, and the weaker form. The strong 

form of the Fisher effect states that the nominal interest rate fully adjusts to expected 

inflation, while the weaker form of the Fisher effect identifies circumstances where the 

nominal interest rate underadjusts (or overadjusts) to inflation expectations2. 

The weaker form of the Fisher effect is more realistic in empirical studies, which can be 

interpreted to mean the existence of a positive relation between the nominal interest rate and 

expected inflation, in which case a rise in nominal interest rates does not necessarily indicate 
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a tightening of the stance of monetary policy. Because of its importance to policy, the Fisher 

relationship has attracted lots of attention and been tested extensively empirically. In 

general, there is controversy among economists over the short-run Fisher effect (that a 

change in the interest rate is associated with an immediate change in the expected inflation). 

However, most empirical work tends to support the existence of the long-run Fisher effect 

(that the expected inflation rate will tend to be high when the interest rate is high for a long 

period of time). 

In this section, we use an alternative and, we think, better measure of inflation 

expectations to examine the short-run Fisher effect with U.S. data. The remainder of this 

section consists of three subsections. We start with a survey of the literature in subsection 

2.1. The methodology and the empirical test results of the short-run Fisher relationship are 

provided in subsections 2.2 and 2.3, respectively. 

2.1. Literature Review 

A problem that arises in empirical testing of the Fisher hypothesis is how to measure 

inflation expectations. In Fisher's (1930) original work, he assumed that the expected 

inflation rate is a distributed lag of current and past realized price changes, and applied a 

simple regression to explore the relationship between the nominal interest rate and expected 

inflation. Using annual data over 1890-1927 for the United States, and 1820-1924 for the 

United Kingdom, Fisher found that inflation expectations were not reflected instantaneously 

in interest rates. The lag length for the price changes was large and the lag weights dropped 

off slowly. So, he concluded: 
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We have found evidence general and specific ... that price changes do, generallyand 
perceptibly affect the interest rate in the direction indicated by a priori theory. But since 
forethought is imperfect, the effects are smaller than the theory requires and lag behind 
price movements, in some periods, very greatly. When the effects of price changes upon 
interest rates are distributed over several years, we have found remarkably high 
coefficients of correlation, thus indicating that interest rates follow price changes closely 
in degree, though rather distantly in time. [Fisher, 1930, p451]. 

Other early findings in line with Fisher's initial work are that there is no relationship 

between the interest rate observed at a point in time and the inflation rate subsequently 

observed. However, there does appear to be a relationship between the current interest rate 

and past rates of inflation, which is interpreted as evidence in favor of the Fisherian view. 

For example, by adopting the basic distributed lag mechanism in the formation of 

expectations but using geometrically declining weights, Sargent (1969) employed a 

commodity price index to construct inflation expectations with U.S. annual data over the 

period 1902-1940. Gibson (1970) used the U.S. annual implicit NNP deflator to calculate the 

expected rates of price change over the period 1869-1941. Both studies supported Fisher's 

finding of a significant distributed lag effect in expectation formation. 

The majority of the early studies used the distributed lag of price changes as a proxy for 

inflation expectations. However, such tests relied on the joint hypothesis that the expected 

rate of inflation was solely dependent upon past rates of price change, along with the Fisher 

effect of price expectations on market interest rates. To allow the test of the Fisher effect to 

be independent of the assumption that price expectations were based on past price 

experience, Gibson (1972) suggested using the Livingston survey data on expected rates of 

price change to construct inflation expectations. Using U.S. data over the period 1952-1970, 

he found the real rate of interest was not affected by price expectations and interest rates fully 

adjusted to expectations, which lent support to the Fisher effect. Pyle (1972) compared the 
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test results of the Fisher effect using the Livingston survey data as a proxy with those using 

the distributed lag of price change as a proxy for inflation expectations from 1954 to 1969, 

and concluded that the use of the survey data was at least as powerful as the use of the 

distributed lag proxy in explaining nominal interest rates. 

The testing of the Fisher effect took a different turn with the development of and 

integration between the rational expectations theory pioneered by Muth (1961) and the 

efficient market theory advanced by Fama (1970). In the study by Fama (1975), he argued 

that future price changes were reflected in the current rate of interest based on the efficient 

market theory, in contrast to the view that past changes in the price level were embodied in 

the current interest rate as suggested by Fisher (1930). Using the rate of change in Consumer 

Price Index (CPI) to approximate the expected rate of inflation (7tt), and the one-month 

Treasury bill rate as the nominal interest rate (Rt) over the period 1953-1971, Fama tested the 

joint hypothesis that the U.S Treasure bill market was efficient and that the expected real 

returns were constant through time in the following regression: 

7it = aQ +alRl +et (3.1) 

where oto represents the constant equilibrium expected real return, and the null of a, = -1 

states that variation in the nominal interest rate directly reflects the variation in the expected 

inflation rate. He showed that the estimate of ai was not significantly different from the 

hypothesized minus one, and concluded that the market used all the available information 

about the rate of inflation in setting the nominal rate of interest, thus supporting the Fisher 

effect. 
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Fama's findings were subsequently questioned by Carlson (1977), Hess and Bisksler 

(1975), and Nelson and Schwert (1977). Carlson (1977) argued the acceptance of the Fisher 

effect in Fama's (1975) study was because of the substantial trending in both inflation and 

interest rates over the sample period 1953-1971. He replicated Fama's regression by using 

the arithmetic average of individual forecasts of the CPI in the Livingston survey as a proxy 

for inflation expectations over the period 1953-1965 when the expected inflation rate was 

stable while the nominal interest rate had considerable variation, and found that the 

coefficient estimate of ai was close to zero and the null hypothesis at = -1 was rejected. 

Hess and Bisksler (1975) and Nelson and Schwert (1977) used the Box-Jenkins 

methodology3 to construct optimal predictors of inflation based on the past history of 

inflation rates. Their regressions of the realized inflation rate on the interest rate and the time 

series predictor of inflation yielded a non-zero and significant coefficient for the latter term, 

indicating the forecasts contained information about the rate of inflation not embodied in the 

rate of interest, therefore rejecting the Fama's (1975) joint hypothesis. 

With developments in the time series econometric literature, researchers have been 

forced to reconsider the validity of the previous regression tests of the Fisher effect. As 

pointed out by Nelson and Plosser (1982), many macroeconomic time series may be 

characterized as having stochastic trends, which led empirical studies on the Fisher effect to 

pay more attention to the development of more appropriate methods for examining the time 

series properties of the (expected) inflation and interest rates. 

Mishkin (1992) showed that the Fisher relationship appeared only in samples where 

inflation and interest rates exhibited stochastic trends, which explained why a Fisher effect 

was widely accepted for some periods (e.g., after the Fed-Treasury Accord in 1951 until 



www.manaraa.com

108 

October 1979) but not in other periods (e.g., prior to World War II or after October 1979). 

He also pointed out that previous studies on the Fisher effect did not make the distinction 

between short-run and long-run forecasting ability, hence no distinction between the short-

run Fisher effect and the long-run Fisher effect. Mishkin (1992) suggested, the correct 

procedure to test the long-run Fisher effect, when inflation and interest rates had unit roots, 

was to test for cointegration between n™ and. Ç in the following equation: 

(3.2) 

where n™ is the m-period future inflation rate from time t to t+m, and z'f is the m-period 

interest rate known at time t.4 The test for the short-run Fisher effect when both series had 

unit roots was to test for a significant positive coefficient (3m in the following regression: 

0.3) 

which could be modified under rational expectations as: 

A*," 6,-"+,,;' (3.4) 

where 77,™ = v™ +s™ - s™,  ; and £,m is defined as e t
m  = n™ -E t [x™],  which is the forecast 

error of inflation that is orthogonal to any information known at time t. Using monthly data 

on inflation and Treasury bill rates from 1953 to 1990, Mishkin (1992) found unit roots in 

both the inflation and interest rate series, and evidence of the long-run Fisher effect using the 

Engle and Granger (1987) cointegration procedure. However, he did not find evidence of a 

short-run relationship. In contrast, Wallace and Warner (1993) found a short-run Fisher 

effect, and a long-run Fisher effect by applying the Johansen cointegration test (Johansen, 

1988; Johansen & Juselius, 1990), with U.S. quarterly data over the period 1948-1990. 

Evans and Lewis (1995) found that the Johansen cointegrating estimates differed from the 



www.manaraa.com

109 

hypothesized values and hence invalidated the long-run Fisher effect over the period 1947-

1987. They argued, however, that such a conclusion was deceptive because rational 

expectations of infrequent shifts in the inflation process induced small sample bias that 

persisted even in fairly long samples. By characterizing possible shifts in inflation as a 

Markov switching model and using the forecasts of inflation expectations from such a model 

to test the long-run Fisher effect, they were unable to reject that the nominal interest rate 

reflected the expected inflation rate one-for-one in the long run. 

A generalized form of the Fisher equation taking into consideration the tax effect on the 

nominal return was studied by Crowder and Hoffman (1996). They stated that the "after-tax" 

nominal interest rate was positively related to the real rate and expected inflation under 

rational expectations as in Fisher's original theory: 

(1 -T , ) i t  =a + /3n t  +e t  (3.5) 

where xt is the tax rate on nominal returns, and the actual inflation rate 7tt is used as a proxy 

for inflation expectations. They applied the Johansen procedure to test cointegration between 

the rate of interest and the rate of inflation using U.S. quarterly data over 1952-1991. They 

observed that a one percent increase in inflation yielded a 1.34 percent increase in the 

nominal interest rate before adjusting for the tax effect; after the tax-effect adjustment, the 

Fisher effect was insignificantly different from unity, as implied by the theory. 

In 1997, Weidmann extended the literature on the long-run Fisher effect in a new 

direction. He proposed a threshold cointegration (TC) model, which is a nonlinear model 

and can account for the fact that inflation and interest rates seldom occur outside some 

narrow band in some industrialized countries.5 Weidmann (1997) applied the TC model to 

test the Fisher relationship with German data over the period 1967-1996, and found evidence 
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supporting the Fisher effect that nominal interest rate vary one-for-one with inflation in the 

long run. A more recent paper by Bajo-Rubio, Diaz-Roldan and Esteve (2004) made use of 

the TC model in the analysis of the role of nonlinearity in the Fisher relationship for Spain 

over the period 1963-2002, and found evidence in favor of a two-regime TC model which 

characterized the nonlinear adjustment of the nominal interest rate toward a long-run 

equilibrium. 

Summing up, empirical studies of the Fisher effect hypothesis have tried various 

approaches to derive a proxy for inflation expectations over the years, from using a 

distributed lag on past price change as a proxy in early studies to using directly observed 

inflation expectations from surveys in later work. Recent studies focus more on 

methodological advances involving the examination of the time series properties of expected 

inflation and interest rates, along with the nonlinearity in the Fisher relationship. Overall, 

empirical studies on the Fisher relationship have provided mixed, inconsistent results on the 

short-run Fisher effect, but tend to support the existence of the long-run Fisher effect. Our 

purpose in this study is to focus on using an alternative measure of inflation expectations, 

which is considered to be able to track more closely any expected change in inflation, in the 

examination of the short-run Fisher effect with U.S. data. In the next subsection, we 

introduce the statistical tests for the presence of a unit root, and the empirical procedure that 

will be used to examine the short-run Fisher effect. 

2.2. Methodology 

2.2.1. Unit root tests 
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As pointed out by Granger and Newbold (1974), and Phillips (1986), a regression may be 

spurious in the presence of unit root variables. That is, the usual estimation and inference 

procedures will tend to suggest a statistically significant relationship between variables that 

are, in fact, generated independently of one another. Therefore, in the study of the Fisher 

effect, we need to examine whether the expected inflation rate and the interest rate are unit 

root processes. Some researchers, including Mishkin (1992), Wallace and Warner (1993), 

and Evans and Lewis (1995) have shown that the null hypothesis that the inflation and 

interest rates contain a unit root cannot be rejected for U.S. data. Two formal tests, the 

Augmented Dickey-Fuller (ADF) test and the Phillips-Perron test, are used to check for the 

presence of a unit root in this study. 

Dickey and Fuller (1979, 1981) considered three different regression equations in the 

first-order autoregressive process to test for the presence of a unit root. The Dickey-Fuller 

(DF) test was later extended to test a unit root in higher-order equations (i.e., p-th order 

autoregressive processes), and is referred to as the ADF test: 

Ay, = P y,-1 + xl (3.6) 

Ay ,=a + p  y,_ x  + </>Ay,-i+, + e, (3-7) 

Ay, = CC +  py t _ x  +pt  + XU-Ay,-,+i + £ t  (3.8) 

The unit root null hypothesis is, in each case, HQ: p = 0. The autoregressive terms, Ayt-i, ..., 

Ayt-p+i, account for serial correlation in the yt process. Aside from the autoregressive terms, 

regression equation (3.6) represents a random walk model under the null and yt is a zero-

mean stationary process under the alternative. Equation (3.7) adds an intercept which is 

assumed to be zero under HQ. Thus, under the null yt is a random walk but it can have a non-
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zero mean under the alternative. Equation (3.8) includes a linear time trend. Under the null, 

P is assumed to be zero but a is unrestricted so that yt is a random walk with drift. Under the 

alternative, yt is trend stationary. Thus, the proper choice of model (3.6), (3.7), or (3.8) 

depends on the kind of behavior one wants to allow under the null and alternative 

hypotheses. The standard DF and ADF tests are based on the t-statistic for the OLS 

estimator of p. In all of the above regression equations, if we cannot reject the null 

hypothesis Hq: p = 0, then the conclusion is that the time series {yt} contains a unit root, i.e., 

{yt} is a nonstationary process. Dickey and Fuller (1981) also provided F-statistics, called 

<j>i, <|)2, and <|>3, to test joint hypotheses on the coefficients. Using equation (3.7), the null 

hypothesis p = a = 0 is  tested using the <j) i  statist ic.  The joint  hypothesis p = a = P = 0in 

equation (3.8) is tested using the ^ statistic, and the null p = p = 0 is tested using the (j); 

statistic. The ADF test assumes that the errors are statistically independent and have a 

constant variance. To relax such assumptions and allow for autocorrelation and 

heteroskedasticity in the error term of the Dickey-Fuller regressions, Phillips and Perron 

(1988) suggested a nonparametric correction to the DF test, referred to as the Phillips-Perron 

test. 

2.2.2. Tests for the Fisher relationship 

The Fisher effect can be summarized in mathematical terms as: 

i ,=E t _ x [r t }  + E t _ x [n t ]  (3.9) 

where it refers to the nominal interest rate at time t; Et.i[rt] and Et.i[7tt] are respectively the 

real rate of interest expected, and the inflation rate expected at time t-1 for the period t. 
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Based on the assumption that the real interest rate does not change much, the expected real 

rate can be expressed as the difference between a constant cto, and a stationary disturbance et: 

Et.i[r,] = a0 - st (3.10) 

Substitute it into equation (3.9) and rearrange: 

Et-i[7it] = ai + it + 8t (3.11) 

where ai = -cto. If there is a Fisher effect such that the impact of expected inflation on the 

nominal interest rate exists, the best linear forecast of expected inflation can be obtained by 

regressing the expected rate of inflation on the nominal interest rate: 

n] =a + P i t  +s t  (3.12) 

where n] = Et-i[7it], and et represents the error term. A significant (3 coefficient indicates the 

existence of the weaker form of the Fisher effect, while a unity means the existence of the 

strong form of the Fisher effect. 

The regression in equation (3.12) may be spurious if any of the variables contain a unit 

root. When both the expected inflation and the interest rate have a unit root, the short-run 

Fisher effect can be tested using the following regression: 

Att/  =a + fiAi,  + 77, (3.13) 

where Att* = E,_x  [n,  ] -  E t_2  \n t_x  ], Az, = z, - zM, and r|t represents the disturbance term. The 

finding of a positive significant coefficient (3 in the above equation would suggest evidence 

in favor of the short-run Fisher effect that a change in the interest rate is associated with an 

immediate change in the expected inflation rate. 
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2.3. Empirical Results 

The expected rate of inflation, n e
t  , is obtained from a procedure proposed by Hamilton 

(1992) taking into account tri-annual commodity futures market data from mid-1975 to the 

end of 2001. The nominal interest rate series, it, is the three-month Treasury bill rate taken 

from the databank of the Federal Reserve Bank at St. Louis. To match the tri-annual 

frequency of the expected rate of inflation, we choose the January, May and September 

monthly interest rates, which we refer to as I, II and III, respectively. The WINRATS 

program is used in this study. 

Plots of the expected rate of inflation and the interest rate series appear in Figure 3.1. It 

seems there is little evidence of explosive behavior or a time trend; however, both series 

appear to be more volatile around the period 1979-19826. It is widely accepted that the 

monetary regime changed at 1979 and early 1980s. Results in previous studies suggested 

that the relationship of nominal interest rates and inflation shifted with the monetary regime 

change (Clarida & Friedman, 1984; Huizinga & Mishkin, 1986; Roley, 1986; Mishkin, 

1992). 

The stationarity of the expected rate of inflation and the interest rate series are examined 

by the ADF and the Phillips-Perron tests. Panel A of Table 3.1 reports the results of the ADF 

tests. The lag length in the ADF test is selected by starting with higher-order lags, for 

instance, n, then delete the insignificant lag length using the usual t-test and re-run the 

regression with n-1 lags; repeat this process until the last lag is significantly different from 

zero. The number of lags used is three for the expected rate of inflation, and one for the 

interest rate series. The ADF test statistics for each variable and for the different 



www.manaraa.com

115 

specifications described in equations (3.6) to (3.8) are all insignificantly different from zero 

at the 5 percent level regardless of the presence of a constant or a trend. So we are unable to 

reject the null hypothesis of a unit root in any case and conclude that the expected inflation 

rate and the interest rate are unit root processes. 

Panel B of Table 3.1 shows the Phillips-Perron test statistics with different lag lengths 

ranging from one to three. The results confirm the conclusions from the ADF test that the 

expected rate of inflation and the interest rate series possess a unit root in their autoregressive 

representation7. 

As we mentioned earlier, there are noted monetary policy changes at 1979 and early 

1980s. Unit root tests are biased towards accepting the null of a unit root in the presence of a 

structural break (Enders, 1995), so we need to be cautious about the conclusions that the 

expected rate of inflation and the interest rate series are nonstationary over 1975:11-2001:111. 

To avoid possible structural breaks, we restrict our sample to 1982-2001, and apply the ADF 

and the Phillips-Perron tests to examine whether the two time series are unit root processes 

over this subsample period. 

Over the sample period 1982-2001, the number of lags used for the ADF test is two for 

the expected rate of inflation, and one for the interest rate series. The ADF test statistics for 

each variable and for the different specifications are all significantly different from zero at 

the 5 percent level regardless of the presence of a constant or a trend. So we reject the null of 

a unit root and conclude that the expected rate of inflation and the interest rate series are 

stationary processes. The Phillips-Perron test statistics tell the same story that these two 

series do not contain a unit root at the 10 percent significance level. Therefore, to make the 

sample more homogeneous and avoid possible structural breaks, our analysis below are 
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conducted over 1982:1-2001:111 under the assumption that the expected rate of inflation and 

the interest rate series are stationary. 

The short-run Fisher effect says that a change in the interest rate is associated with an 

immediate change in the expected inflation. Since both the expected rate of inflation and the 

interest rate series are stationary, the test of the short-run Fisher effect involves testing for a 

significant correlation of the level of interest rates and the expected inflation, i.e., testing for 

the significance of P in equation (3.12) in the weaker form of the Fisher effect, and one in the 

strong form of the Fisher effect. The parameter estimates with the standard errors given in 

parentheses are: 

The point estimate of P is 0.36, which is significantly different from zero at the 5 percent 

level. However, the Ljung-Box (^-statistics indicate the presence of serial correlation in the 

There are two approaches to deal with the serial correlation problem. The first approach 

is to re-estimate equation (3.12) by the feasible generalized least squares (FGLS) procedure. 

An AR(3) model, as suggested by the Box-Jenkins methodology, seems adequate to represent 

the serial correlation: 

where ê t _ x , è t _ 2  and ê,_3 are the lagged terms of the estimated residuals. Let the coefficient 

estimates of the AR(3) model above be px = -0.024, p2= 0.170, and p3= 0.391, then 

transform the variables in equation (3.12) as: 

ne
t = 1.144 + 0.360/, 

(0.473) (0.074) 
(3.14) 

regression errors8, so the usual OLS test statistics are not valid. 

s, =-0.024 + 0.170g,+0.39l£,_3 

(0.121) (0.121) (0.122) 
(3.15) 
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- Â<3 (3.16) 

l t  -  l t  ~  P\  l t - 1 ~ Pl  4-2 ~ Pl  h- 3 
(3.17) 

Next, estimate the equation by the OLS using the transformed variables: 

n e
t  = 0.337 + 0.407 i ,  

(0.322) (0.114) 
(3.18) 

The estimated coefficient for the interest rate term is about 0.41, which is significantly 

different from zero at the 5 percent level. The diagnostic checking by the Ljung-Box Q-

statistics indicates that there is no serial correlation in the estimated regression errors in the 

estimated standard error. The parameter estimates with the estimated robust errors given in 

parentheses are: 

The estimated coefficient for the interest rate term is significantly different from zero at the 5 

percent level, which is consistent with the result when the FGLS approach is used. 

Therefore, the preceding empirical results indicate that the three-month Treasury bill rates 

contain a highly significant amount of predictive power for expected inflation, which in turn 

suggests the existence of the short-run Fisher effect over the time period 1982-2001. 

The conclusion regarding the validity of the short-run Fisher effect is based on the 

estimation using the constructed expected rate of inflation incorporating information in the 

commodity futures market to measure inflation expectations. In our previous study, another 

proxy for inflation expectations was derived from an ARMA(3,0) time series model. Using 

above regression9. The second approach attempts to construct an autocorrelation-robust 

< = 1.144 + 0.360*; 

(0.535) (0.083) 
(3.19) 
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this proxy in the examination of the short-run Fisher effect, the parameter estimates from the 

FGLS are10: 

The point estimate of (3 is not significantly different from zero at the 5 percent level, 

suggesting that there is no evidence for the presence of a short-run Fisher effect, which is in 

contrast to the conclusion when the constructed expected rate of inflation is used as the 

measure of inflation expectations. However, if we construct an autocorrelation-robust 

estimated standard error, the parameter estimate of P is significantly different from zero at 

the 5 percent level in the estimated equation: 

This provides supporting evidence for the short-run Fisher effect, which contradicts the 

conclusion when we use the FGLS approach to correct the serial correlation. So it seems that 

the choices of how to correct the serial correlation affects our conclusion on the test of the 

short-run Fisher effect when we use the measure of inflation expectations derived from the 

time series model, and we are not clear about the sources that cause these different 

conclusions. 

Since the proxy obtained from the time series model is purely adaptive and reflects only 

information imbedded in the past history of inflation rates, while the constructed inflation 

expectations using Hamilton's procedure take into account not only the information available 

at the time of people's forecast but also the information inferred by econometricians after the 

fact which provides a better measure of people's true expectations, therefore we believe the 

*7= 0.810 + 0.090*; 

(0.065) (0.082) 
(3.20) 

< = 0.996 + 0.424 i ,  

(0.878) (0.142) 
(3.21) 
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conclusion of the existence of the short-run Fisher effect when using the constructed inflation 

expectations using Hamilton's procedure is more convincing. 

Summing up, we find a positive relation between expected inflation and the nominal 

interest rate, which provides supporting evidence for the existence of the short-run Fisher 

effect when the expected rate of inflation that is believed to be a more accurate 

approximation to people's true expectations of inflation is employed in the examination of 

the short-run Fisher effect. 

3. Phillips Curve 

Mankiw (1998) summarized ten essential principles in economics. One of the three 

principles allocated to macroeconomics is: "Society faces a short-run tradeoff between 

inflation and unemployment" which is a statement about the effects of monetary policy and 

claims that changes in monetary policy push these two variables in opposite directions. Such 

a negative relationship was hypothesized originally by Phillips (1958) and Samuelson and 

Solow (1960). Empirically, it is described by the conventional Phillips curve: the higher the 

rate of unemployment, the lower the rate of inflation. The conventional Phillips curve held 

pretty well throughout the 1960s in the United States. 

At the height of the conventional Phillips curve's popularity as a guide to policy, Phelps 

(1967) and Friedman (1968) independently challenged its theoretical foundations. They 

argued that well-informed, rational employers and workers would pay attention only to the 

real wage rate rather than the nominal wage rate, so the effects of expected inflation on wage 

bargaining and price settings should be taken into account. An expectations-augmented 
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Phillips Curve was proposed with a central role placed for expectations in the inflation 

process. The coexistence of high unemployment and high inflation in the 1970s supported 

the Phelps and Friedman arguments, and the failure of the conventional Phillips curve was 

attributed to the failure to consider the role of expectations. 

Later, building on the theoretical modeling work of Taylor (1980), Rotemberg (1982), 

and Calvo (1983), the New Keynesian Phillips curve was specified. The New Keynesian 

Phillips curve suggests that prices are sticky and the expected future inflation at the current 

time determines current inflation. This is contrary to the expectations-augmented Phillips 

curve, where the expected future inflation in the previous period determines the current 

inflation. 

The expectations-augmented Phillips curve and the New Keynesian Phillips curve are 

two main alternative specifications of the Phillips curve augmented with expectations. In 

general, the two Phillips curves are specified in terms of unemployment, but alternative 

measures of economic activity (e.g. the output gap, or capacity utilization) can be used. Then 

the Phillips curve is interpreted broadly as a relation between aggregate real economic 

activity and expected inflation. 

Paloviita (2002) assessed empirically the two main alternative specifications of the 

Phillips curve, specified in terms of the output gap for the Euro area over the period 1981-

2000. He used direct measures of inflation expectations obtained from the OECD inflation 

forecasts, and found that the New Keynesian Phillips curve fit the data slightly better than the 

expectations-augmented Phillips curve. 

Following the study of Paloviita (2002), the aim of this paper is to estimate and compare 

the two main alternative specifications of the Phillips curve specified in terms of the 
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unemployment gap for the United States. Instead of using survey proxies for inflation 

expectation as in Paloviita's paper, we measure inflation expectations by a constructed time 

series of the expected rate of inflation. As we have shown before, the time series of the 

expected rate of inflation constructed from Hamilton's (1992) procedure seems to provide a 

good empirical proxy of people's inflation expectations. For each of the two main alternative 

specifications of the Phillips curve, the Phillips curve equation is first estimated using the 

generalized method of moments estimator. Then, the empirical superiority of these two 

specifications is examined by encompassing and non-nested tests. We hope to cast some 

light on the modeling of inflation dynamics by addressing which specification fits U.S. data 

better, which, in turn, helps provide guidance for forecasting and policy analysis. 

The remainder of this paper proceeds as follows. A survey of the literature on the two 

main alternative specifications of the Phillips curve is presented in section 3.1. Section 3.2 

provides an overview of the methodologies used to estimate the Phillips curve equation and 

compare the two main specifications. Then, in section 3.3, the data are introduced and the 

empirical results are reported. 

3.1. Literature Review 

In 1958, Phillips published a study which represents a milestone in the development of 

macroeconomics. He showed that there was a consistent negative relationship between the 

rate of wage inflation and the rate of unemployment in the United Kingdom over the period 

1861-1957. The only important exception was during the period of volatile inflation between 

the two World Wars. 
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Samuelson and Solow (1960) estimated the conventional Phillips curve with U.S. data 

from 1935 to 1959. They found similar results to those of Phillips (1958), confirming the 

existence of an inverse relationship between wage inflation and unemployment for the U.S. 

economy. The conventional Phillips curve performed well in the United States during the 

1960s, which encouraged many economists to "treat it as a sort of menu of policy trade-offs" 

(Hoover, 2003). However, the conventional Phillips curve failed to explain the coexistence 

of high unemployment and high inflation, i.e., the stagflation, in the 1970s. 

The breakdown of the conventional Phillips curve as an empirical relationship was 

preceded by theoretical arguments predicting its failure. In the late 1960s, Phelps (1967) and 

Friedman11 (1968) independently challenged the conventional Phillips curve's theoretical 

underpinnings, and proposed an expectations-augmented Phillips curve. In their version, 

suppliers of labor at the beginning of an inflationary period underestimate the price level that 

would prevail over the period of the work contract, and offer a greater supply of labor 

according to the overestimated real wage at the prevailing (nominal) wage than they would if 

expectations were correct, which results in employment greater than the equilibrium level. 

The low unemployment signals a tight labor market, wages tend to rise or rise more quickly 

than expected as wages are being bid upwards when employers attempt to fill out the rank of 

their required labor force. Since the wages are the major cost of production, rising wages 

lead to the increase of prices. In short, a fall in unemployment leads to a rise in inflation in 

the short-run where expectations are given. By assuming that current inflation depends 

negatively on the amount of slack in the labor market, the expectations-augmented Phillips 

curve simply translates labor market slack, unemployment, into inflation: 

n t  = n e
t  +A (u,  -  u t)  (3.22) 
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where ut is the observed unemployment rate; u* is the non-accelerating-inflation rate of 

unemployment (NAIRU12); and the difference between ut and u* is the unemployment gap, 

which measures the slack in the labor market. A negative (positive) unemployment gap 

indicates that the economy is operating above (below) potential output, and represents the 

excess demand for (supply of) labor and/or output in economy. The variable n] is the 

expected inflation rate, in the expectations-augmented specification of the Phillips curve, it 

stands for E,which is the expected rate of inflation formed at the end of period t-1 for 

period t. The parameter X is assumed to be less than zero, based on the assumption that 

current inflation depends negatively on the amount of slack in the labor market. In empirical 

estimation, equation (3.22) is modified slightly as: 

n t  =PE t . l[n t  ]  +  A(« f- u t )  (3.23) 

where P is expected to be one. Other measures instead of unemployment gap have been used 

in empirical studies, for example, the capacity utilization rate and the output gap13. 

The expectations-augmented Phillips curve specification has been assessed and 

employed in many empirical studies. Tootell (1994) employed an expectations-augmented 

Phillips curve to test the stability of the U.S. NAIRU. Using quarterly data from 1973 to 

1993 and weighted average of lagged inflation rates as a proxy for inflation expectations, he 

found little support for a significant change in the NAIRU. The estimated coefficient for the 

unemployment gap was negative and significant, providing additional evidence for the 

Phillips curve relation. Using U.S. state-level data covering the period 1964-1993, Payne 

(1995) tested the expectations-augmented Phillips curve with both adaptive and rational 

expectations estimates14 of the expected rate of inflation, and concluded that the 



www.manaraa.com

124 

expectations-augmented Phillips curve based on adaptive expectations was preferred. Lown 

and Rich (1997) pointed out that inflation had not accelerated since the 1990-1991 recession, 

and remained stable from late 1993 to early 199515. They also noted the unusual slowdown 

in compensation growth16 during the period 1992-1994, which led them to investigate 

whether the slow compensation growth could account for the low level of inflation since 

labor costs are an important factor in determining prices. By including compensation growth 

in their model, Lown and Rich showed that the modified Phillips curve was able to track 

inflation more accurately. Thus, the slow compensation growth resulted in the coexistence of 

low unemployment and low inflation over the post-1991 period, and they concluded that the 

Phillips curve was inherently stable. Eliasson (2001) assessed the evidence of instability and 

nonlinearity in the parameters of the expectations-augmented Phillips curve for the United 

States. She could not reject the linearity and the stability of the Phillips curve using quarterly 

data from 1978 to 1997 when the Michigan survey measure of expected inflation was used as 

a proxy for inflation expectations. 

Advances in the theoretical modeling of inflation dynamics formed around the 

micro foundations of sticky price models led to the specification of the New Keynesian 

Phillips curve. One category of the sticky price models in the New Keynesian literature is 

the time-dependent model17 built upon the Taylor's (1979, 1980) work on overlapping 

contracts and Rotemberg's (1982) model of quadratic costs of price adjustment. The most 

elegant formulation is based on Calvo's (1983) model of random price adjustment, which is 

introduced briefly below. 

In Calvo's model, firms follow time-contingent price adjustment rules in which there is 

no deterministic schedule for price adjustment but the time for adjustment arrives randomly 
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from a Poisson process. Every period, a fraction of firms adjust prices, and each firm has the 

same probability (1-6) of being one of the adjusting firms regardless of how long it has been 

since its last price adjustment. Correspondingly, each firm has the probability 0 of keeping 

the price fixed. Thus, the degree of nominal rigidity in the economy increases as 0 rises. 

Calvo's model states that firms set their prices for fixed periods of time, so that prices are 

sticky and inflation depends entirely on current and expected future economic conditions: 

nt=pE, ] + K(ut-ut) (3.24) 

where Et[7tt+i] refers to the expected rate of inflation ne
M for period t+1 at time t; the 

parameter p is the discount factor; and the coefficient K represents the sensitivity of inflation 

to variation of labor slack18. 

Empirical studies of the New Keynesian model have not provided consistent evidence on 

the Phillips curve relation for the United States. Roberts (1995) presented estimates of the 

New Keynesian Phillips curve over the period 1949-1990, and concluded that the New 

Keynesian Phillips curve was stable. In addition, he suggested that the actual future inflation 

was a worse proxy for inflation expectations than were the surveys, based on the evidence 

that the coefficient estimate for the excess demand variable was significant and had the 

expected sign when the Michigan survey and the Livingston survey of price expectations 

were used as proxies, while the coefficient estimate was not significant due to large estimated 

standard error when the actual future inflation was used as a proxy. In a later study, Roberts 

(1997) analyzed inflation dynamics over the period 1961-1995, and found favorable evidence 

for the New Keynesian Phillips curve when the Michigan survey estimate of inflation 

expectations was employed in the estimation. By contrast, Fuhrer and Moore (1995) argued 



www.manaraa.com

126 

that the standard New Keynesian model with sticky prices and rational expectations did not 

fit U.S. post-war data from 1965 to 1993. 

In 1999, Gali and Gertler introduced a new hybrid Phillips curve allowing a fraction of 

firms to use a backward-looking rule to set prices. The New Keynesian Phillips curve with 

only forward-looking elements is nested within the hybrid Phillips curve as a special case: 

7Ct=A.st+yfEt[7rM] + yb7rt_, (3.25) 

where st is a measure of real marginal cost defined as the real unit labor costs in the non-farm 

business sector; 7it-i is the lagged term of inflation that is designed to capture the inflation 

persistence. The hybrid Phillips curve model reduces to the New Keynesian Phillips curve 

when the coefficient yy = 0. The GMM estimates of the model suggested that the New 

Keynesian Phillips curve provided a reasonably good description of quarterly U.S. inflation 

dynamics over the period 1960-1997, so that forward-looking behavior was more important 

than backward-looking behavior. However, using U.S. data over the same period, Rudd and 

Whelan (2002) estimated a hybrid model by an alternative GMM procedure and found a very 

limited role for forward-looking behavior. Linde (2002) made use of the FIML method and 

found that backward-looking behavior was more important, though forward-looking behavior 

was highly significant. By contrast, Kurmann (2003) extended a Maximum Likelihood 

approach to estimate the hybrid Phillips curve, and obtained similar results to those reported 

by Gali and Gertler (1999). Furthermore, Gali, Gertler and Lopez-Salido (2003) re-examined 

the hybrid Phillips curve using a variety of econometric procedures, and claimed that the 

conclusions of Gali and Gertler (1999) and others regarding the importance role of forward-

looking behavior appeared to be robust. 
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Such studies, by examining whether forward-looking behavior or backward-looking 

behavior is more appropriate in describing inflation dynamics, are helpful in policy analysis 

to determine whether inflation can be controlled through the expectation channel. In our 

analysis, we emphasize on the role of expectations in inflation dynamics by assuming 

forward-looking behavior of economic agents, and examine whether the previously expected 

current inflation or the current expected future inflation (i.e., the expectations-augmented 

Phillips curve or the New Keynesian Phillips curve) dominates inflation dynamics. Our 

study might provide a guide to monetary policy decisions since under the expectations-

augmented Phillips curve, monetary policy changes inflation indirectly through excess 

demand, while under the New Keynesian Phillips curve, a transition to a new policy regime 

affects inflation immediately. To our knowledge, direct comparison of the expectations-

augmented Phillips curve and the New Keynesian Phillips curve specified in terms of 

unemployment gap has not been presented for the United States in the existing literature. 

In the next section, we describe our estimation procedures. In the subsequent one, we 

first present estimates of the expectations-augmented Phillips curve and the New Keynesian 

Phillips curve, then the comparison tests of the two main alternative specifications of the 

Phillips curve are provided to examine which specification is better in describing U.S. 

inflation dynamics. 

3.2. Testing Strategy 

3.2.1. Single equation estimation 
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Following Paloviita (2002), the econometric procedure we use to examine each of the two 

main alternative specifications of the Phillips curve is the Generalized Method of Moments 

(GMM). The GMM approach is often employed in empirical investigation of the Phillips 

curve relation, for instance, Gali and Gertler (1999), Roberts (2001), and Gali, Gertler and 

Lopez-Salido (2001, 2003). 

Consider the following model: 

y  = XÇ + e  (3.26) 

where y is a Txl vector of observations; X is a TxK matrix of observations; £, is a Kxl vector 

of parameters to be estimated; and s is a Txl vector of disturbances. In our analysis, each 

specification of the Phillips curve can be written in the form of equation (3.26), where y is 

the inflation rate 7tt; X is a Tx2 matrix, where two columns are, respectively, the observations 

o f  e x p e c t e d  r a t e  o f  i n f l a t i o n  n e
t  ,  a n d  t h e  u n e m p l o y m e n t  g a p  ( u t  - u t ) .  

The GMM estimator of £, is given by: 

(X 'ZQ- 'Z 'X)- l X'ZQ- 'Z 'y  (3.27) 

where Z is a Txq matrix of instrumental variables, and Q is an estimated qxq optimal 

weighting matrix. The commonly used Newey-West weighting matrix that provides a 

consistent estimate of C2 (Newey and West, 1987) is applied in this paper. The use of 

instrumental variables in the GMM approach helps protect against the possibility that the 

error term e is correlated with the regressors in equation (3.26), i.e., E[xtst] * 0, which could 

be caused by omitted variables, or measurement errors embedded in the regressors. 

The use of the GMM approach requires the researcher to choose a set of instrumental 

variables or instruments, for instance, an instrument set of q variables in equation (3.27). 
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Roberts (2001) pointed out that lagged dependent variables are obvious candidates of 

instrumental variables in macroeconomic models. In general, the ability of the instruments to 

capture movements in the variable of interest can be improved by using more lags; however, 

as cautioned by Roberts (2001), this benefit must be weighted against the danger of using too 

many instruments in a finite sample. If an instrument set is the same dimension as that of the 

parameter vector £, in equation (3.26), then the model is said to be just identified19. As the 

number of instrumental variables q exceeds the number of explanatory variables K, the risk 

of overfitting and potential estimation bias arise. One diagnostic test to examine the validity 

of the instrumental variables is the Hansen test of overidentification (Hansen, 1982). Under 

the null hypothesis that the (q - K) overidentifying restrictions are valid, the Hansen test 

statistic is defined as: 

ê 'ZÙ l Z'ê  (3.28) 

has a limiting distribution, where s is the estimated residuals from equation (3.26). 

To evaluate the estimated single equation estimation, another diagnostic test is to check 

for potential weakness of the instrument variables. According to Staiger and Stock (1997), 

the instruments are weak if the partial correlation between the instruments and the included 

endogenous variable is low. When the instruments are weak, the GMM estimate of £, in 

equation (3.26) in general is inconsistent and biased, and inference based on standard 

asymptotic theory may be unreliable even if the sample size is large. An F-test is suggested 

by Staiger and Stock (1997) to check for potential weakness of the instrumental variables. 

S i n c e  w e  a r e  i n t e r e s t e d  i n  e q u a t i o n  ( 3 . 2 6 ) ,  r e w r i t e  i t  b y  d e n o t i n g X  =  [ X x , X 2 ]  

and£ H [£,£]': 
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y - X\Ç\ +^2^2+ s  (3.29) 

where X| is a TxKi matrix of observations on the Kt endogenous variables, and X2 is a TxK.% 

matrix of exogenous regressors where K2 = K-Kj. The F-test is a test of the null hypothesis 

of fl = 0 in the following regression: 

where Z is the same matrix of instrumental variables as in equation (3.27); V is a Txl vector 

of error terms; H and O are respectively a qxl vector and a IQxl vector of parameters to be 

estimated. If the F-test rejects the null hypothesis, it is said that the empirical evidence is 

against weakness of instruments, suggesting the instrumental variables used are relevant. 

3.2.2. Comparison tests 

One motivation of this paper is to compare the empirical performance of the two main 

alternative specifications of the Phillips curve with U.S. data. To make the comparisons, we 

follow Paloviita (2002) to apply two statistical tests. The first test is the encompassing test, 

and the second is the non-nested test (Davidson and MacKinnon, 1993). 

The encompassing test, in this paper, is to test whether the currently expected future 

inflation Et [nt+l ], or the previously expected current inflation [>,] dominates the inflation 

process n t . Consider the following model of the inflation rate: 

The sum of the estimated coefficients on E t [ j r,+1] and \ n t ] is restricted to be unity, 

which allows us to analyze the relative weights of the alternative components in the inflation 

process. If the null hypothesis of 0 = 0 is rejected and the hypothesis of (1-0) = 0 is not 

x .  = z  n + x . o + v  (3.30) 

n t  = OE,[;nM]  + (1 -6)E t_x[n t]  + (j>(w, -u t)  (3.31) 
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rejected, then equation (3.31) reduces to the New Keynesian Phillips curve, and the currently 

expected future inflation is said to dominate the inflation process. If we fail to reject the null 

hypothesis of 0 = 0 but be able to reject the hypothesis of (1-0) = 0, then equation (3.31) 

represents the expectations-augmented Phillips curve, and the previously expected current 

inflation dominates the inflation process. In other words, the regression equation (3.31) 

encompasses both specifications of the Phillips curve under consideration as special cases. 

The second test, the non-nested test, embeds the two main alternative specifications in a 

general model, and uses mixing parameters in the combined statistical model. To be more 

specific, two general models including the alternative specifications of the Phillips curve, as 

suggested by Palovitta (2002), can be formulated as follows: 

= 0 - - < x ) { P E t [ n M \  +  K  ( u t - u * ) }  +  a n t  (3.32) 

n t  = { \ - ô ) { p E t _ x [ 7 t t ]  +  X  ( u t - u t ) }  +  S 7 Ï t  (3.33) 

where n t  is the fitted value obtained from the single equation estimation of the expectations-

augmented Phillips curve in equation (3.23), and nt is the fitted value obtained from the 

single equation estimation of the New Keynesian Phillips curve in equation (3.24). There are 

four possible conclusions we can make from combining the test results obtained from the 

above two equations: 

(1). If the null hypothesis of a = 0 is rejected in equation (3.32), the expectations-augmented 

Phillips curve is said to have explanatory power over the New Keynesian specification. If 

the null hypothesis of 8 = 0 is not rejected in equation (3.33), the New Keynesian Phillips 

curve is said to have no explanatory power over the expectations-augmented Phillips curve. 
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The combined test results provide supporting evidence for the expectations-augmented 

Phillips curve, and evidence against the New Keynesian Phillips curve. 

(2). If we fail to reject the null hypothesis of a = 0 in equation (3.32), but at the same time, 

are able to reject the null hypothesis of 8 = 0 in equation (3.33), then we find supporting 

evidence for the New Keynesian Phillips curve, and evidence against the expectations-

augmented Phillips curve. 

(3). If both the null hypothesis a = 0 in equation (3.32) and the null hypothesis of 8 = 0 in 

equation (3.33) are rejected against the general models, then the conclusion is that neither of 

the two alternative specifications is satisfactory. 

(4). If neither the null hypothesis of a = 0 in equation (3.32) nor the null hypothesis of 8 = 0 

in equation (3.33) is rejected, the combined test results indicate either the data is equally 

fitted with both specifications, or that the empirical data is poor for testing inflation dynamics 

with the two alternative specifications of the Phillips curve. 

3.3. Empirical Results 

3.3.1. Data 

The expected rate of inflation is the same time series as that used in the previous Fisher effect 

analysis, and the sample is from 1982 to 2001 to avoid possible structural breaks. To match 

the frequency of the expected rate of inflation series, the observations at January, May, and 

September are selected for the aggregate price and the unemployment rate series. The 

aggregate price is the monthly consumer price index (CPI) from the International Financial 
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Statistics, then the inflation rate is defined as the change in the natural log difference between 

the CPIs, for instance, the inflation rate at May is computed as the log difference between the 

CPI at May and CPI at January. The observed unemployment rate is the monthly civilian 

unemployment rate obtained from the U.S. Bureau of Labor Statistics. The unemployment 

gap is denoted as the difference between the observed unemployment rate and the NAIRU. 

Since the NAIRU is an unobservable quantity, we need an estimate of the NAIRU to 

construct the unemployment gap series. The software WINRATS is used in this study. 

In general, there are two frequently used approaches to measure the NAIRU. The first 

approach assumes that the NAIRU is constant, and then the NAIRU is estimated via the 

regression intercept over the sample period (Gordon, 1994; Fuhrer, 1995; and Tootell, 1994). 

The assumption of a constant NAIRU has been questioned by many economists, and there is 

a growing literature that seeks to estimate the path of a time varying NAIRU. With the 

emphasis on the time variability of the NAIRU, the second approach extracts a smoothed or 

trend series from the observed unemployment rate series via the use of statistical smoothing 

or de-trending algorithms, one of which is the H-P filter (Hodrick and Prescott, 1997)20. This 

approach has been used in empirical studies such as Ball and Mankiw (2002), and Ferreira, 

Aguirre, and Gomes (2003). 

In this study, the H-P filter technique is used to derive estimates of the NAIRU. The 

choice of a smoothing parameter required to implement the H-P filter is largely arbitrary, and 

we will use two alternative H-P smoothing parameters. The first smoothing parameter is 

1600, suggested by Hodrick and Prescott (1997), which is a standard choice for the H-P 

smoothing parameter, especially for quarterly data. The second smoothing parameter is 

506.25, calculated according to the formula recommended by Ravn and Uhlig (2001)21. 
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Based on the estimated NAIRU using the smoothing parameters 1600 and 506.25, we 

obtain two unemployment gap series, referred to as UGAPl and UGAP2 in the remainder of 

this study. We have shown earlier in this paper that the expected rate of inflation series is 

stationary. To avoid possible spurious regression, the stationarities of the inflation rate and 

the two unemployment gap series are examined by the ADF test and the Phillips-Perron test. 

Table 3.2 reports the unit root test results. The lag length in the ADF tests is selected to 

be two for all three series because the coefficient estimates on higher orders of the lags are 

not significantly different from zero. The critical value at the 5 percent level is -2.89 for the 

ADF test with the constant, and -1.95 for the ADF test without the constant. In both cases, 

we are able to reject the null hypothesis of a unit root at the 5 percent level for the inflation 

rate, and the two unemployment gap series. The Phillips-Perron test results tell a similar 

story. Given the critical value -2.89 at the 5 percent significance level for the Phillips-Perron 

test, we can reject the null hypothesis of the presence of a unit root in the inflation rate and 

the unemployment gap series UGAP2, but we cannot reject the null hypothesis that the 

unemployment gap series UGAPl contains a unit root at the 5 percent level. However, at the 

10 percent significance level, we are able to reject the null of the presence of a unit root, and 

conclude that the unemployment gap series UGAPl is stationary. Therefore, we proceed 

under the assumption that all the variables used in this study are stationary. 

3.3.2. Estimation of the single equation 

Using the GMM approach, we estimate separately the expectations-augmented Phillips curve 

specified in equation (3.23), and the New Keynesian Phillips curve specified in equation 

(3.24). For comparative purpose, we follow Paloviita (2002) and use the same instrument set 
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for both specifications. Our instrument set includes three variables: the lagged expected rate 

of inflation, and two lags of the unemployment gap. Two alternative unemployment gap 

series, the UGAPl and the UGAP2, are employed in the estimation. Table 3.3 reports the 

estimates of both models using a 13-lag Newey-West weighting matrix22. 

The estimation results are quite plausible over the sample period. For both 

specifications of the Phillips curve using the UGAPl as the measure of unemployment gap, 

the estimated coefficients on expected inflation are positive and significant, which is 

consistent with the underlying theory. In particular, the point estimates on expected inflation 

are about 0.96, and we cannot reject the null of p = 1 at the 5 percent significance level. The 

coefficients associated with the unemployment gap have the expected negative sign, though 

the estimated coefficients are not significantly different from zero at the 5 percent level in 

either the expectations-augmented Phillips curve or the New Keynesian Phillips curve. One 

possible reason for the insignificant estimated coefficients on the unemployment gap is that 

the expected inflation has already incorporated information contained in the unemployment 

gap. Similar coefficient estimates (shown in Table 3.3) and the same conclusions are 

obtained when the UGAP2 is employed as the measure of unemployment gap in the 

estimation of equations (3.23) and (3.24). 

Two diagnostic tests are conducted to evaluate the estimation results reported in Table 

3.3: Hansen's test of validity of the overidentifying restrictions, and an F-test checking 

potential weakness of the instrumental variables. The chi-square statistics of the Hansen test 

are shown in the last column of Table 3.3. We fail to reject the null hypothesis and conclude 

that the overidentifying restrictions are valid for both specifications of the Phillips curve with 

either unemployment gap series, the UGAPl or the UGAP2. In addition to the Hansen test, 
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potential weakness of the instrumental variables is checked by an F-test of n = 0 in equation 

(3.30), where the matrix of Xi represents the unemployment gap, and X% represents the 

expected rate of inflation23. The calculated F-statistic is 151.81 with a p-value = 0.00, and 

99.84 with a p-value = 0.00 when the UGAPl and UGAP2 are respectively used as the 

measure of unemployment gap in the regression described in equation (3.30). In both cases, 

the null hypothesis of II = 0 is strongly rejected at the 5 percent significance level suggesting 

the instrumental variables seem to be relevant. Taken together, the results of the two 

diagnostic tests indicate that both specifications of the Phillips curve work well and the 

inferences based on empirical models are reliable. 

Summing up this subsection, both the expectations-augmented Phillips curve and the 

New Keynesian Phillips curve seem to capture inflation dynamics fairly well when we use 

the constructed expected rate of inflation as a proxy for inflation expectations. The estimated 

coefficients on the expected rate of inflation were positive and significant in both 

specifications, and the estimated coefficients on the unemployment gap had the expected 

negative sign. However, the statistical preference for either specification of the Phillips 

curve cannot be claimed from the single equation estimation results. The test results 

presented in the next subsection may be helpful in this regard. 

3.3.3. Comparison test results 

Two statistical tests, the encompassing test and the non-nested test, are conducted to compare 

the two main alternative specifications of the unemployment gap based Phillips curve. To 

allow for comparison of results from the two statistical tests, we use the same instrument set 

in both tests: the three instrumental variables used in the single equation estimations, and an 
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additional lag of the expected rate of inflation24. Moreover, the Hansen test will be applied to 

check whether the overidentifying restrictions are valid. 

The encompassing test described in equation (3.31) tests whether the currently expected 

future inflation, E,[nt+X ], or the previously expected current inflation, [nt ], dominates the 

inflation process. When the UGAPl is employed as the measure of the unemployment gap in 

the encompassing test, the parameter estimates and the standard errors shown in parentheses 

are: 

The point estimate on the currently expected future inflation is about 0.69 and is significant 

at the 10 percent level, while the point estimate on the previously expected current inflation 

is relatively small and not statistically different from zero. Therefore, the currently expected 

future inflation appears to dominate the inflation process compared with the previously 

expected current inflation. The estimated coefficient on the unemployment gap has the 

expected negative sign, but it is not statistically different from zero at the 5 percent 

significance level. The chi-square statistic of the Hansen test is 0.93 with a p-value = 0.34, 

so we fail to reject the null hypothesis that the overidentifying restrictions are valid at 

conventional significance levels. When the UGAP2 is used as the measure of unemployment 

gap in the encompassing test, the results are similar to that when the UGAPl is used in the 

test: 

The diagnostic check indicates that the overidentifying restrictions are valid at conventional 

7it = 0.69\Et[nt+x] + 0.309.Em[tt,]-0.106(w, -ut) 

(0.385) (0.385) (0.107) 
(3.34) 

nt = 0.735E,[7it+l] + 0.265£,_,\nt] - 0.1 38(m, -U') 

(0.384) (0.384) (0.145) 
(3.35) 
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significance levels since the chi-square statistic of the Hansen test is 1.02 with a p-value = 

0.31. Overall, the encompassing test appears to support the New Keynesian specification of 

the Phillips curve. 

In addition to the encompassing test, the two specifications of the Phillips curve are 

compared using the non-nested test by estimating equations (3.32) and (3.33). Table 3.4 

provides the non-nested test results including the parameter estimates, the associated standard 

errors, and the chi-square statistics from the Hansen test. When the UGAPl is used as the 

measure of unemployment gap in the non-nested test, we can not reject the null hypothesis of 

a = 0 in equation (3.32) at conventional significance levels, suggesting that the expectations-

augmented Phillips curve has no explanatory power over the New Keynesian Phillips curve. 

At the same time, we are able to reject the null hypothesis of ô = 0 in equation (3.33) at the 1 

percent significance level, indicating that the New Keynesian Phillips curve has explanatory 

power over the expectations-augmented Phillips curve. Combining the above test results 

from equations (3.32) and (3.33), we conclude that the New Keynesian Phillips curve is 

preferred over the expectations-augmented Phillips curve with the U.S. data. The same 

conclusion can be obtained in the non-nested test when the UGAP2 is used as the measure of 

the unemployment gap in the estimation of equations (3.32) and (3.33). 

All in all, the encompassing and the non-nested tests results provide evidence in favor of 

the New Keynesian Phillips curve even though the expectations-augmented Phillips curve 

provided a reasonable description of inflation dynamics with the U.S. data. This finding is in 

line with the previous study by Palovitta (2002) who showed supporting evidence for the 

New Keynesian Phillips curve with the Euro data using the encompassing and the non-nested 

tests. 



www.manaraa.com

139 

The above conclusions base on the estimation using the constructed expected rate of 

inflation incorporating information in the commodity futures market as a measure of inflation 

expectations. To compare the empirical superiority of the New Keynesian Phillips curve and 

the expectations-augmented Phillips curve, we employ another proxy for inflation 

expectations derived from an ARMA(3,0) time series model in the previous study. The 

comparison tests' results are reported in Table 3.5. 

The encompassing test results shown in Panel A of Table 3.5 indicate that the currently 

expected future inflation appears to dominate the inflation process compared with the 

previously expected current inflation when either the UGAPl or the UGAP2 is employed as 

the measure of the unemployment gap, hence the encompassing test appears to support the 

New Keynesian specification of the Phillips curve. The non-nested test results shown in 

Panel B of Table 3.5 also suggest that the New Keynesian Phillips curve is preferred over the 

expectations-augmented Phillips curve regardless of the use of alternative measures of the 

unemployment gap25. Therefore, the encompassing and the non-nested tests results provide 

evidence in favor of the New Keynesian Phillips curve with the U.S. data when the proxy for 

inflation expectations is derived from a time series model. This finding is consistent with the 

previous comparison tests' results when the constructed expected rate of inflation from 

Hamilton's procedure is used as the proxy for inflation expectations. 

4. Summary 

In this paper, we have tried to provide some insight into the empirical testing of the Fisher 

effect and the Phillips curve by employing an alternative measure of inflation expectations 
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for the United States over the period 1982-2001. The constructed expected rate of inflation 

series is derived by incorporating information from commodity futures prices, which are 

considered to respond quickly to new information available in the commodity futures market, 

including changes in monetary policy and expected inflation. Such a measure of inflation 

expectations is believed to track any expected change in inflation more closely than 

conventional time series or survey methods and hence is a more accurate measure of people's 

true expectations. Based on the estimation using this alternative measure of inflation 

expectations, the empirical testing results of the Fisher effect hypothesis and the Phillips 

curve may be more reliable than (or at lease reliable as) those using other measures of 

inflation expectations. 

Tests of the Fisher hypothesis have attracted lots of attention, and the results in general 

support the existence of the long-run Fisher effect, but the short-run Fisher effect has limited 

empirical support. This paper focuses on the reexamination of the short-run Fisher effect. 

The FGLS regression results show the estimated coefficient for the interest rate term is 

positive and significant, which provides support for the existence of the short-run Fisher 

effect. Such findings suggest a need for caution in using the nominal interest rate as an 

indicator of the stance of monetary policy since changes in the nominal interest rate reflect 

changes in the expected inflation rate rather than the real interest rate. 

Since the early 1990s, the coexistence of low unemployment and low inflation in the 

United States has caused renewed interest in studying the Phillips curve. This study is the 

first attempt to compare the empirical superiority of the two main alternative specifications 

of the unemployment gap-based Phillips curve, the expectations-augmented Phillips curve, 

and the New Keynesian Phillips curve, using the encompassing and non-nested tests for the 
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United States. Although single equation estimation by the GMM approach suggests that both 

specifications of the Phillips curve seem to capture inflation dynamics quite reasonably, the 

comparison tests results present evidence in favor of the New Keynesian Phillips curve, 

which is useful to monetary policymakers as a guide to policy change. Under the New 

Keynesian Phillips curve, monetary policy changes inflation immediately; the better the 

policy is understood by economic agents, the more current inflation is affected. 

The short-run Fisher effect and the superiority of the two main alternative specifications 

of the Phillips curve are also examined using a proxy derived from a time series model. We 

find evidence against the presence of the short-run Fisher effect, but evidence in favor of the 

New Keynesian Phillips curve when using this proxy. Compared with the results using the 

constructed expected rate of inflation incorporating information from the commodity futures 

market, the empirical finding is consistent with that in the comparison of the two main 

alternative specifications of the Phillips curve. However, the finding is inconsistent with that 

in the examination of the short-run Fisher effect, and we believe the reason for this difference 

may come from the fact that the proxy derived from the time series model is a less accurate 

measure of inflation expectations. 

Future attempts can be made to examine the Fisher relationship in the generalized form 

that takes into account the tax effect on the nominal return, or to examine and compare the 

two main specifications of the Phillips curve by using alternative indicators of excess 

demand. The long-run equilibrium relationship between the expected inflation and the 

interest rate, or the long-run inflation-unemployment tradeoff can be investigated if a longer 

sample period is available. It also would be interesting to explore a nonlinear Phillips curve 

or a nonlinear relationship between the expected inflation and the interest rate. Moreover, 
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future research work is desirable in the development of new methodology that focuses on 

deriving alternative, preferable more accurate measure of inflation expectations, with which 

can provide further evidence in the investigation of some key economic theories in which a 

key role is played by inflation expectations. 

Notes 

1. Roberts (1995) examined the New Keynesian Phillips curve specified as Apt-EtApl+s =a+pyt+£ 

where yt represents the excess demand. He employed the actual future value of inflation as a 
proxy for the expectation, then the model is estimated in the form: A/?, - Apl+l =a+fiy, +s, +vt, 

where vt= E,Ap,+rAp,+i and is an additional source of error. 

2. Olekalns (1996) stated that the strong form of the Fisher hypothesis required assumptions 
regarding the absence of taxation, and a zero interest elasticity of money demand. Once relaxing 
these assumptions, the weaker form of the Fisher hypothesis is more realistic. For instance, an 
interest-elastic money demand function implies partial adjustment, while taxation implies that the 
nominal interest rate should include a premium over and above the expected inflation. 

3. The Box-Jenkins methodology is a three-stage method (including the identification stage, the 
estimation stage and diagnostic checking stage) that can be used to select an appropriate model 
for estimating and forecasting a univariate time series. 

4. Alternatively, the test for the long-run Fisher effect under the assumption of rational expectations 
was to test for a unit root in the ex ante real interest rate rrt

m defined as rr" = i" -E\n™\ • 

5. The inflation and interest rates move like independent random walks within the band, but as the 
inflation breaches the threshold, the policy maker will actively pursue monetary policies that aim 
to bring inflation back inside the band whenever the inflation rate falls outside such band of 
tolerable inflation. 

6. The plot of the expected inflation series appears to show seasonality. By regressing the expected 
rate of inflation on two seasonal dummies (May dummy & September dummy), we find the 
coefficient on the May dummy is significant at the 10 percent level, and the estimated intercept 
representing the January dummy is significant at the 5 percent level. Therefore, seasonality exists 
but it is uncertain what causes this problem. 

7. The Phillips-Perron test statistics indicate that we cannot reject the null of the presence of a unit 
root at the 5 percent level, but we can reject the null at the 10 percent level for the expected rate 
of inflation when the lag lengths are one and three. However, Ng and Perron (2001) pointed out 
that the inflation rate is a time series that often exhibits a large negative moving-average root, in 
which case, many unit root tests display significant size distortion resulting in over rejection of 
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the unit root null hypothesis, but their proposed Ng-Perron test has improved size and power. 
The calculated Ng-Perron test statistic is -0.88, compared with the critical value -1.98 at the 5 
percent significance level, we cannot reject the presence of a unit root in the expected rate of 
inflation series. 

8. The calculated Ljung-Box (^-statistics at lag 3, 6, and 12 are respectively 11.17 (p-value=0.01), 
23.79 (p-value=0.00), and 31.73 (p-value=0.00). The Ljung-Box Q-statistic is specified as 
Q = t(T + 2)]T* i RL l(T -k)~ x) ' where T is the number of observations, and rk is the sample 

autocorrelation function. If the calculated Q exceeds the critical value, then at least one value of 
rk is statistically different from zero at the specified significance level. It can be used as a check 
to see if the residuals from an estimated ARMA(p,q) model are a white-noise process, and Q has 
a chi-square distribution with s-p-q degrees of freedom. 

9. The calculated Ljung-Box (^-statistics at lag 3, 6, and 12 are respectively 2.10 (p-value=0.55), 
12.10 (p-value=0.06), and 19.15 (p-value=0.09). 

10. The parameter estimate of P in equation (3.12) is about 0.424, but the Ljung-Box (^-statistics 
indicate the presence of serial correlation in the regression errors, which seems to be adequately 
represented by an AR(5) model. To correct for the serial correlation, equation (3.12) is re-
estimated by the FGLS estimator, and results are shown in equation (3.20). 

11. Friedman (1968) developed the natural rate hypothesis and drew the distinction between the 
short-run and long-run Phillips curve trade-off: there is always a temporary trade-off between 
inflation and unemployment, but there is no permanent trade-off based on the natural rate theory. 
The natural rate theory states the Phillips curve tradeoff is vertical at the natural rate of 
unemployment in the long run. The natural rate of unemployment is the rate at which there is no 
upward or downward pressure on wage rates, or the rate that prevails when expectations are fully 
realized and incorporated into wages and prices. In this study, the Phillips curve refers to the 
short-run relation, and our literature review focuses on studies for the United States. 

12. The NAIRU is the unemployment rate that is consistent with stable inflation, below which 
inflation tends to rise and above which inflation tends to fall. The NAIRU is interchangeable 
with the natural rate of unemployment in the linear specification of the Phillips curves. 

13. Additional variables such as oil price, changes in the relative price of imports, change of relative 
price of food and energy, and dummy variables have also been incorporated to capture various 
supply shocks in the empirical studies of the Phillips curve. 

14. The adaptive expected rate of inflation was the actual inflation rate in the previous period. The 
rational inflation expectation was derived from regressing inflation rate on past inflation, a time 
trend, real growth rate of money supply, and real GDP. 

15. The restrained behavior of prices since the end of the 1990-1991 recession to mid 1990s is 
referred to as an inflation puzzle by economists. The coexistence of low unemployment and 
low inflation has caused renewed academic attention on the Phillips curve relation and led 
empirical studies into different directions, a couple of which are listed as follows. Different 
measures of excess demand instead of the unemployment gap have been used, for example, 
marginal cost is used as a measure of excess demand in the Phillips curve studies by Gali and 
Gertler (1999), and Gali, Gertler, and Lopez-Salido (2001). The instability of the Phillips curve 
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for other countries are explored, for example, in Kichian's (2001) work with the Canadian data, 
and Ferreira, Aguirre, and Gomes's (2003) study with the Brazilian data. Alternative Phillips 
curve models are also proposed, such as the "triangle" model of Gordon (1997), and the sticky-
information Phillips curve of Mankiw and Reis (2001). 

16. The behavior of compensation growth is consistent with that for the benefits and wages 
representing total labor cost. The compensation growth variable in Lown and Rich's (1997) 
study is the growth rate of compensation per hour for the non-farm business sector reported by 
the Department of Labor, Bureau of Labor Statistics. Compensation comprises wages and 
salaries for workers plus employers' contributions for social security insurance and private 
benefit plans; it also includes an estimate of wages, salaries, and supplemental payments for self-
employed workers. 

17. The other category of the sticky price models in the New Keynesian literature is the state-
dependent model (Ball, Mankiw & Romer, 1988). The state-dependent model says that firms will 
change prices when underlying determinants such as demand or costs reaches certain bounds. In 
general, the state-dependent models have no explicit closed-form solutions but the time-
dependent models have. Consequently, the time-dependent models are more popular. 

18. The coefficient K is a function of (3 and 0, specified as K=(1-0)(1-P0)/0. In the framework where 
0 represents the degree of price rigidity, K is decreasing in 0, the longer prices are fixed on 
average, the less sensitive inflation is to current variation in excess demand. As a result, forward-
looking firms have to set prices for possible multiple periods and base their pricing decisions on 
the expected future developments of excess demand. 

19. Consider a linear regression model)/, = x t '£ + e t , where x, is a TxK matrix of observations. 

Suppose it is known that E[xfj = 0, and E[xt(yt-xt'Ç)] # 0 when \ # E,0. In such a case, there are 
K moment conditions and K unknown parameters, this model is said to be exactly identified, and 
OLS estimates are consistent and unbiased. Suppose now that E[xt8t] # 0, and a set of 
instrumental variables Z with dimension q > K, is used in the GMM regression based on the 
assumption that E[ztSt] = 0 which is referred to as the orthogonality condition. In this case, the 
number of orthogonality conditions q is greater than the number of parameters K to be estimated, 
this model is said to be overidentified. 

20. The H-P filter is a generalization of a linear time trend, which allows the slope of the trend to 
change gradually over time. It minimizes the sum of squared deviations between the trend and 
the actual series with a penalty for curvature that keeps the trend smooth. The H-P filter yields a 
linear time trend if the penalty is very high, while the filter yields the original series if there is no 
penalty. 

21. Ravn and Uhlig (2001) suggested that the smoothing parameter in the H-P filter should move 
with the fourth power of the frequency of observations according to the following 
formula: As = s4A,, where À,, is the standard choice of 1600 for quarterly data, and s is the ratio 

of the frequency of observation compared to quarterly data. In our study, the sample is tri-annual 
data, so s = %, and As = 506.25. 

22. The choice of 13 lags in the Newey-West weighting matrix is based on the following evidence: 
the autocorrelation coefficients for the residual series of the instrumental regression before 
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applying the weighting matrix in the New Keynesian Phillips curve are significant at lags 11,12 
and 13. At lag 13, the estimated ACF is -0.31, comparing with the critical value -0.26 at the 5 
percent significance level, we reject the null of zero autocorrelation coefficients, and conclude 
that the autocorrelation still exists at lag 13. The lag length 13 in the weighting matrix is also 
large enough to get rid of serial correlations in the residual series obtained in other model 
estimations, which provide similar coefficient estimates when using different lags. 

23. The expected rate of inflation is a predetermined variable, so we treat its lagged term as an 
exogenous variable, then the unemployment gap is the only right-hand side endogenous variable 
in equation (3.29). 

24. The use of the instrument set with three instruments in the single equation estimations provides 
insignificant estimates due to large standard errors, which may be caused by omitted variables. 
The inclusion of an additional instrument provides plausible estimates for the comparison tests. 

25. The 13-lag Newey-West weighting matrix is used, which is the same as in the comparison tests 
when the constructed expected rate of inflation is employed as the proxy for inflation expectation. 
Results from the empirical tests using different lag lengths of the Newey-West weighting matrix 
are similar. The diagnostic check indicates that the overidentifying restrictions are valid at 
conventional significance levels. Note the single equation estimation results are similar to those 
when the proxy for inflation expectations is derived from Hamilton's procedure. Both seem to 
capture inflation dynamics fairly well: the estimated coefficients on expected inflation are 
positive and significant which is consistent with the underlying theory; the coefficients on the 
unemployment gap have the expected negative sign. 
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Table 3.1. The unit root test of expected rate of inflation and interest rate 

Variable yt Hypothesis 
1975:11-2001:111 1982:1-2001:111 

Lags Test statistic Lags Test statistic 

Panel A. Augmented Dickey Fuller Test 

Ay,=cc + p y,_,  +pt  + Ay,_M  + e,  

Expected rate of inflation 

3-month Treasury bill rate 

Expected rate of inflation 

3-month Treasury bill rate 

Expected rate of inflation 

3-month Treasury bill rate 

H0: p=0 3 -2.75 

H0: a=p=P=0 2.62 

H0: p=|3=0 3.86 

Ho: p=0 1 -2.54 

H0: a=p=P=0 2.33 

H0: p=P=0 3.44 

Ay,=a + py,_x  + + e,  

H0: p=0 3 -1.50 

H0: a=p=0 1.19 

H0: p=0 1 -1.62 

H0: a=p=0 1.37 

A y ,  = p y , - x  +X,V<a->'M+ I + e <  

H0: p=0 3 -1.06 

Ho: p=0 1 -0.74 

-5.08** 

7.16** 

9.99** 

-3.93** 

4.90** 

6.58** 

-5.11** 

9.82** 

-3.40** 

5.68** 

-3.04** 

-2.43** 

Panel B. Phillips-Perron Test 

Expected rate of inflation Ho: p—0 1 -2.64* 1 -5.40** 

Ho: p—0 2 -2.49 2 -5.45** 

Ho: p=0 3 -2.72* 3 -5.66** 

3-month Treasury bill rate Ho: p=0 1 -1.87 1 -2.72* 

Ho: p=0 2 -1.88 2 -2.74* 

Ho: p=0 3 -1.91 3 -2.75* 

Note: 1). *, ** indicate significance at the 10% and 5% level, respectively. 
2). Ljung-Box Q-statistics show that the residuals from the fitted model appear to be white noise at the 5% level. 
3). At the 10%, and 5% significance level, the critical values for the ADF test with the constant and trend are respectively -3.18, and -
3.45; for the ADF test with only the constant are respectively -2.58, and -2.89; and for the ADF test without the constant and trend are 
respectively-1.61, and -1.95. 
4). At the 10%, and 5% significance level, the critical values for the F-statistics <|>i are respectively 3.86, and 4.71 ; for <(>2 are 
respectively 4.16, and 4.88; and for <t>3 are respectively 5.47, and 6.49. 
5). At the 10%, and 5% significance level, the critical values for the Phillips-Perron test are respectively -2.58, and -2.89. 
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Table 3.2. The unit root tests of the inflation rate and unemployment gaps over the period 1982-2001 

Unemployment gap Lags Hypothesis Test statistic 

Panel A. Augmented Dickey Fuller Test 

Ay, =a + py,_ t  + + s, 

Inflation rate 2 H0: p=0 -5.59** 

UGAP1 2 H„: p=0 -3.69** 

UGAP2 2 H0:p=0 -4.31** 

Ay, =py,-x + + e< 

Inflation rate 2 H0: p=0 -5.65** 

UGAP1 2 Ho: p=0 -3.72** 

UGAP2 2 Ho: p=0 -4.35** 

Panel B. Phillips-Perron Test 

Inflation rate 2 H0: p=0 -7.43** 

UGAP1 2 Hg: p=0 -2.88* 

UGAP2 2 Ho: p=0 -3.62** 

Note: *, ** indicate significance at the 10% and 5% level, respectively. 
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Table 33. The single equation estimation results 

Panel A. Expectation-augmented Phillips curve: 7tt = (5 E l_ ]  \n t  ] + X (tt, - U t )  +  £ t  

P X xl 
(std. error) (std. error) (p-value) 

UGAP1 0.961** -0.082 1.381 
(0.018) (0.052) (0.240) 

UGAP2 0.962** -0.078 1.393 
(0.018) (0.075) (0.238) 

Panel B. New-Keynesian Phillips curve: 7Z t  — ft E\n t+X ] + K (u t  -  U t  )  + £,  

P K xl 
(std. error) (std. error) (p-value) 

UGAP1 0.963** -0.106 0.876 
(0.032) (0.132) (0.349) 

UGAP2 0.966** -0.149 0.951 
(0.031) (0.182) (0.329) 

Note: *, ** indicate significance at the 5% and 1% level, respectively. 
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Table 3.4. The non-nested test results for the two alternative specifications of the Phillips curve 

Panel A. non-nested test: nt — (1 - a){J3Et [7T,+1 ] + K (ut — u' )} + ant 

a P K ZÏ 
(std. error) (std. error) (std. error) (p-value) 

UGAP1 0.289 0.965* -0.109 0.929 
(0.400) (0.541) (0.153) (0.335) 

UGAP2 0.305 0.968* -0.148 1.020 
(0.400) (0.557) (0.214) (0.312) 

Panel B. non-nested test: 7tt = (1 - ô){PEt_x[7lt~\ +A, (ut - ut )} + S7Tt 

5 P X x; 
(std. error) (std. error) (std. error) (p-value) 

UGAP1 0.604* 0.703 -0.178 0.929 
(0.339) (0.973) (0.277) (0.335) 

UGAP2 0.591* 0.719 -0.215 1.020 
(0.340) (0.941) (0.358) (0.312) 

Note: *, ** indicate significance at the 10% and 5% level, respectively. 
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Table 3.5. The comparison test results using expected inflation rate derived from the time series model 

Panel A. Encompassing test 

n t  = 9E t  [n t+ l  ] + (1 - G) [n t  ] + <j) (u, - u, ) 

9 1-6 <t> x; 
(std. error) (std. error) (std. error) (p-value) 

UGAP1 1.712** -0.712** -0.012 0.126 
(0.342) (0.342) (0.150) (0.723) 

UGAP2 1.712** -0.712** 0.022 0.225 
(0.357) (0.357) (0.187) (0.635) 

Panel B. Non-nested test 

(1). 7t,  = (1 - a ) { p E t [ n M ]  +  K  ( u ,  -U t)}+CC7r t  

a P K xl 
(std. error) (std. error) (std. error) (p-value) 

UGAP1 -0.210 0.935* -0.146 0.126 
(0.506) (0.398) (0.169) (0.723) 

UGAP2 -0.221 0.936* -0.116 0.225 
(0.529) (0.411) (0.207) (0.635) 

(2). 711 — (1 - u t ) }  +  Ô 7 Ï t  

5 P X xl 
(std. error) (std. error) (std. error) (p-value) 

UGAP1 1.235** 0.809 -0.357 0.126 
(0.525) (1.951) (0.849) (0.723) 

UGAP2 1.247** 0.810 -0.297 0.225 
(0.548) (1.935) (0.863) (0.635) 

Note: *, ** indicate significance at the 10% and 5% level, respectively. 
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Figure 3.1. The expected inflation and the interest rates series over 1975:11-2001:111 
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